x=5
y=53
x-y=?
X³y⁴-5y⁸+x³y+xy⁴+x³-y²-xy⁴+5y⁸
=x^3y^4-5y^8+5y^8+x^3y-xy^4+xy^4+x^3-y^2
=x^3y^4+x^3y+x^3-y^2
Hãy giải các phương trình sau đây :
1, x2 - 4x + 4 = 0
2, 2x - y = 5
3, x + 5y = - 3
4, x2 - 2x - 8 = 0
5, 6x2 - 5x - 6 = 0
6,( x2 - 2x )2 - 6 (x2 - 2x ) + 5 = 0
7, x2 - 20x + 96 = 0
8, 2x - y = 3
9, 3x + 2y = 8
10, 2x2 + 5x - 3 = 0
11, 3x - 6 = 0
1) Ta có: \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
a= 1/5 x^5 y - 2/3 x^5y + x^5y tại x=-1 y=2
\(A=\left(\dfrac{1}{5}-\dfrac{2}{3}+1\right)x^5y=\dfrac{8}{15}x^5y\)
Thay x = -1 ; y = 2 ta được \(A=\dfrac{-16}{15}\)
Cho \(\frac{x}{5y}=\frac{y}{2x+y}=\frac{10-5y}{x}\) với x,y khác 0, y khác 2x. Tính \(\left(\frac{x}{y}\right)^2+\left(x-5y\right)^{2015}\)
Tìm giá trị của x và y biết:
a/ 3x + 5y = 13 và y= x +1
b/ 2x - 3y = 4 và x = y+5
c/ -x +5y = -6 và y = x-2
Lời giải:
a. Thay $y=x+1$ vào điều kiện ban đầu có:
$3x+5(x+1)=13$
$8x+5=13$
$8x=8$
$x=1$
$y=x+1=2$
b. Thay $x=y+5$ vô điều kiện đầu thì:
$2(y+5)-3y=4$
$-y+10=4$
$-y=-6$
$y=6$
$x=6+5=11$
c. Thay $y=x-2$ vô điều kiện đầu thì:
$-x+5(x-2)=-6$
$4x-10=-6$
$4x=10+(-6)=4$
$x=1$
$y=x-2=1-2=-1$
a) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\x+1=y\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\3x-3y=-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}8y=16\\x+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)
b) Ta có: \(\left\{{}\begin{matrix}2x-3y=4\\x=y+5\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\2x-2y=10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-y=-6\\x=y+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=11\end{matrix}\right.\)
c) Ta có: \(\left\{{}\begin{matrix}-x+5y=-6\\y=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-x+5y=-6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=-4\\y=x-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=y+2=-1+2=1\end{matrix}\right.\)
giá trị của biểu thức -x^5y+x^2y+x^5y tại x= -1; y=1
Thay x = -1 ; y = 1 ta được :
\(\left(-1\right)^5.1+\left(-1\right)^2.1+\left(-1\right)^5.1=-1+1-1=-1\)
Giải hệ phương trình: \(\hept{\begin{cases}\sqrt{\frac{4x}{5y}}=\sqrt{x+y}-\sqrt{x-y}\\\sqrt{\frac{5y}{x}}=\sqrt{x+y}-\sqrt{x-y}\end{cases}}\)
đk: \(x\ge y>0\). nhân tương ứng với vế hai pt của hệ ta được 2=(x+y)-(x-y)=>y=1. Với y=1 thay vào pt (2) ta có:
\(\sqrt{\frac{5}{x}}=\sqrt{x+1}+\sqrt{x-1}\)
Xét pt trên ta thấy:
\(x=\frac{5}{4}\)là 1 nghiệm của pt
Nếu \(x>\frac{5}{4}\Rightarrow VT< 2< VP\)
Nếu \(x< \frac{5}{4}\Rightarrow VT>2>VP\)
do đó x=5/4 là nghiệm duy nhất của pt
Vậy hệ pt có nghiệm duy nhất là (x;y)=(5/4;1)
Bài 2: Rút gọn biểu thức
a.(-2x3). (x2-5x-1212) -(x3+3)
b.2(x-5y).(x+y)+(x+y)2+(5y-x2)
Lời giải:
a.
$=-2x^5+10x^4+2424x^3-x^3-3=-2x^5+10x^4+2423x^3-3$
b.
$=(x-5y)^2+2(x-5y)(x+y)+(x+y)^2$
$=[(x-5y)+(x+y)]^2=(2x-4y)^2=4x^2-16xy+16y^2$
tìm hai số x, y biết:
1/ -2x=5y và x+y=30
2/ 3x=5y và x+y=40
3/ 4x=5y và 3x-2y=35
4/ x:2=y:(-5) và x-y=7
5/ \(\frac{x}{19}\)=\(\frac{y}{21}\) và 2x-y=34
1. -2x=5y =>\(\frac{x}{y}=\frac{-5}{2}=>y=\frac{-2x}{5}\)
Thế y=\(\frac{-2x}{5}\) ta được:
x+\(\frac{-2x}{5}\)=30 \(\Rightarrow\frac{5x-2x}{5}=30\)
\(\Rightarrow3x=150\)\(\Rightarrow x=50\)
=>y=30-x=30-50=-20.
Vậy x=50; y=-20.
Những bài khác tương tự bạn nhé!
bạn kia làm đúng rồi
k tui nha
thank
( 3x -y)2 -2(3x -y) (x +5y) +(x + 5y)2