tính B=1.2.3+2.3.4 + ....+(n-1)n(+1)
cho em cách giải cụ thể và ráp số liệu vào luôn nhé
Tính
A=\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
Giúp mk nhé, bài này mk ko hiểu lém nên các bn giải cụ thể và dễ hiểu giùm mk nha
= 1/2*(1/1*2 - 1/2*3 + 1/2*3 - 1/3*4 + ... + 1/8*9 - 1/9*10) = 1/2*(1/1*2 - 1/9*10)=1/2 * 22/45 = 11/45
2A = \(\frac{1}{1\cdot2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3}-\frac{1}{3\cdot4}+...+\frac{1}{8\cdot9}-\frac{1}{9\cdot10}\)
2A = \(\frac{1}{2}-\frac{1}{90}\)
2A = \(\frac{44}{90}\)
A = \(\frac{22}{90}\)
1/1.2.3+1/2.3.4+...+1/(n-2).(n-1).n
giúp mình cách làm tổng quát nhé
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\cdot\cdot\cdot+\dfrac{1}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\cdot\cdot\cdot+\dfrac{2}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\right)\)
\(=\dfrac{1}{2}\left[\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+\cdot\cdot\cdot+\dfrac{1}{\left(n-2\right)\left(n-1\right)}-\dfrac{1}{\left(n-1\right)n}\right]\)
\(=\dfrac{1}{2}\left[\dfrac{1}{1\cdot2}-\dfrac{1}{\left(n-1\right)n}\right]\)
\(=\dfrac{1}{2}\cdot\left[\dfrac{n\left(n-1\right)}{2n\left(n-1\right)}-\dfrac{2}{2n\left(n-1\right)}\right]\)
\(=\dfrac{1}{2}\cdot\dfrac{n\left(n-1\right)-2}{2n\left(n-1\right)}\)
\(=\dfrac{n^2-n-2}{4n\left(n-1\right)}\)
#\(Toru\)
https://hoc247.net/hoi-dap/toan-6/tinh-tong-s-1-1-2-3-1-2-3-4-1-n-n-1-n-2--faq240420.html
`->` Mình tham khảo ở đây để làm nếu sai thì cho mik xl ạ.
Đặt \(A=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+....+\dfrac{1}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\)
\(2A=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{\left(n-2\right)\cdot\left(n-1\right)\cdot n}\\ 2A=\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+....+\dfrac{1}{\left(n-2\right)\cdot\left(n-1\right)}-\dfrac{1}{\left(n-1\right)\cdot n}\)
\(2A=\dfrac{1}{1\cdot2}-\dfrac{1}{\left(n-1\right)\cdot\left(n-2\right)}\)
\(A=\dfrac{1}{4}-\dfrac{1}{\left(n-1\right)\cdot\left(n-2\right)\cdot2}\)
Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
B = 1.2.3 + 2.3.4 + ...+ ( n - 1 )n( n + 1 )
\(\Rightarrow\)4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n - 1)n(n + 1)(n + 2) - [(n - 2)(n - 1)n(n + 1)]
= (n - 1)n(n + 1)(n + 2) - 0.1.2.3 = (n - 1)n(n + 1)(n + 2)
\(\Rightarrow B=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
B = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
=> B = (n-1)n(n+1)(n+2)/4
4B = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4B = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4B = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4B = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4B = (n – 1).n(n + 1).(n + 2)
B= (n – 1).n(n + 1).(n + 2) : 4.
Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
Ta có 4B=1.2.3.4+2.3.4.4+...+(n-1)n(n+1).4
=1.2.3.(4-0)+2.3.4.(5-1)+...+(n-1)n(n+1).(n+2-n+2)
=1.2.3.4-0.1.2.3+2.3.4.5-1.2.3.4+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)
=(n-1)n(n+1)(n+2)
Vậy B=\(\frac{\text{(n-1)n(n+1)(n+2)}}{4}\)
B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
4B = 1.2.3.4 + 2.3.4.4 + ... + (n - 1)n(n + 1).4
4B = 1.2.3.4 + 2.3.4.(5 - 1) + ... + (n - 1)n(n + 1)[(n + 2) - (n - 2)]
4B = 1.2.3.4 - 1.2.3.4 + 2.3.4.5 + ... + (n - 1)n(n + 1)(n + 2) - (n-2)(n-1)n(n+1)
4B = (n - 1)n(n + 1)(n + 2)
B = (n - 1)n(n + 1)(n + 2) : 4
\(B=1.2.3+2.3.4+...+\left(n-1\right).n\)\(.\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.4+...+\left(n-1\right).n.\left(n+1\right).4\)
\(4B=1.2.3.4+2.3.4.\left(5-1\right)+...+\left(n-1\right).n.\left(n+1\right).\)\(\left(\left(n+2\right)-\left(n-2\right)\right)\)
\(4B=\)\(1.2.3.4+2.3.4.5-1.2.3.4+...+\)\(\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\)
\(4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
=>\(B=\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)
Thực hiện phép tính:
S=1/1.2.3 +1/2.3.4+...+1/98.99.100
giải hộ nhé có cách giải giùm mik! -_^
s= (2/1.2.3 +2/2.3.4+...+2/98.99.100):2= (1/1.2-1/2.3+1/2.3-1/3.4+...+1/98.99-1/99.100):2=(1/1.2-1/99.100):2=4949/19800=>S=4949/19800
bài này cô dạy mk rùi, nhưng ko mún viết, mỏi tay
\(CM:\frac{1}{a.\left(a+1\right)\left(a+2\right)}=\frac{1}{a.\left(a+1\right)}-\frac{1}{\left(a+1\right)\left(a+2\right)}\)
\(S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)
\(s=\frac{1}{1.2}-\frac{1}{99.100}\)
Tìm số tự nhiên x biết:
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
P/s: Yêu cầu cách giải cụ thể
\(\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\frac{1}{2}\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{23}{45}\)
\(\Rightarrow x=2\)
Câu5: Tính : 1.2.3+2.3.4+3.4.5+...................+28.29.30.Từ đó cho biết kết quả của tổng : 1.2.3+2.3.4+3.4.5+............................+(n-1).n.(n+1) theo n
(với n là số tự nhiên khác 0 )
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30
4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)
4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30
4A = 28.29.30.31 - 0.1.2.3
4A = 28.29.30.31
\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)
Theo cách tính trên ta dễ dàng tính được:
1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{23.24.25}\)
cho mình cách giải luôn nha!
A=1/1.2.3 + 1/2.3.4 + ... + 1/23.24.25
2A=2/1.2.3 + 2/2.3.4 + ... + 2/23.24.25
=1/1.2 - 1/2.3 + 1/2.3 -1/3.4 + .... + 1/23.24 - 1/24.25
=1/1.2 - 1/24.25
Tớ chỉ giải đến đó thôi còn lại các bạn cứ bấm máy tính là ra
Bài toán trên áp dụng bài toán tổng quát sau:
\(\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}=\frac{2}{n.\left(n+1\right).\left(n+2\right)}\)
Suy ra
\(\frac{1}{n.\left(n+1\right).\left(n+2\right)}=\left(\frac{1}{n.\left(n+1\right)}-\frac{1}{\left(n+1\right).\left(n+2\right)}\right).\frac{1}{2}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{23.24.25}\)
\(=\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{23.24}-\frac{1}{24.25}\right).\frac{1}{2}\)
\(=\left(\frac{1}{1.2}-\frac{1}{24.25}\right).\frac{1}{2}\)
\(=\frac{299}{1200}\)
Giải :
= 1/2 . ( 3/1.2 - 3/2.3 + 3/2.3 - 3/3.4 + ... + 3/23.24 - 3/24.25 )
= 1/2 . ( 3/2 - 3/600 )
= 1/2 . 299/200
= 299/400
Đúng(78)
Tính B = 1.2.3 + 2.3.4 + ... + (n - 1)n(n + 1)
giúp mình giải bài này nha.thank(bn nào tl nhanh nhất mk sẽ tik cho nha)
\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(4B=1.2.3.4+2.3.4.\left(5-1\right)+...+\left(n-1\right).n.\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right).n.\left(n+1\right)\)
\(4B=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)
\(B=\frac{\left(n-1\right).n.\left(n+1\right)\left(n+2\right)}{4}\)
Tham khảo nhé~
Ta có: \(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)
\(\Leftrightarrow4B=4.\left[1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\right]\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.4+...+\left(n-1\right).n.\left(n+1\right).4\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+\left(n-1\right)n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(\Leftrightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-2\right).\)\(\left(n-1\right).n.\left(n+1\right)\)
\(\Leftrightarrow4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)
\(\Leftrightarrow B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)
Vậy \(B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)