Cho Δ ABC vuông tại A,vẽ AH ⊥ BC ( H ϵ BC) . Chứng minh rằng : 2AH2 + BH2 + CH2 = BC2
ABC vuông tại A, vẽ AH vuông góc BC (H thuộc BC). CMR 2AH2+BH2+CH2=BC2
Giúp mình với ạ❕Mình cần gấp❕
refer
Cho tam giác ABC vuông tại A.vẽ AH vuông góc với BC tại H.Sao cho:\(BC^2=2AH^2+BH^{^{2^{ }}}+CH^2\) - Hoc24
Cho tam giác ABC vuông tại A có đường sao AH.Gọi E,F lần lượt là hình chiếu của H trên AB,AC. Chứng minh các đẳng thức sau: a) BC2=2AH2+BH2+CH2 b) BE/CF=AB3/AC3 c) BE2=BH3/BC d) AH3=BC×BE×CF e) HE×HF=AH3/BC
Cho tam giác ABC vuông tại A, AH là đường cao (H ϵ BC)
a) Chứng minh rằng: ΔABC đồng đạng Δ HBA
b) Tính độ dài các cạnh BC,AH,HB nếu AB=15cm và SΔABC/SΔHBA= 9/25
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạg với ΔHBA
b: Sửa đề: S ABC/S HBA=25/9
=>AB/HB=BC/BA=AC/HA=5/3
=>15/HB=BC/15=AC/HA=5/3
=>HB=9cm; BC=25cm
AC=căn 25^2-15^2=20cm
AH=15*20/25=12cm
Cho Δ ABC vuông tại A, đường phân giác BE. Kẻ EH vuông góc với
BC (H ϵ BC). Gọi K là giao điểm của AB và HE. Chứng minh rằng:
a) Δ ABE = ΔHBE .
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC. d) AE < EC
a/
Xét tg vuông ABE và tg vuông HBE có
BE chung
\(\widehat{ABE}=\widehat{HBE}\) (gt)
=> tg ABE = tg HBE (Hai tg vuông có cạnh huyền và góc nhọn tương ứng bằng nhau)
b/
tg ABE = tg HBE (cmt) => AB = HB => tg BAH cân tại B
\(\widehat{ABE}=\widehat{HBE}\)
=> BE là trung trực của AH (Trong tg cân đường phân giác của góc ở đỉnh tg cân đồng thời là đường trung trực)
c/
Xét tg vuông KBH và tg vuông ABC có
\(\widehat{B}\) chung
AB = HB (cmt)
=> tg KBH = tg ABC (Hai tg vuông có cạnh góc vuông và góc nhọn tương ứng bằng nhau) => BK=BC
Xét tg BKE và tg BCE có
BE chung
\(\widehat{ABE}=\widehat{HBE}\) (gt)
BK=BC (cmt)
=> tg BKE = tg BCE (c.g.c) => EK = EC
d/
Xét tg vuông AKE có
AE<EK (trong tg vuông cạnh huyền là cạnh có độ dài lớn nhất
Mà EK=EC (cmt)
=> AE<EC
Cho tam giác ABC vuông tại A. Kẻ AH vuông góc BC. Chứng minh: AB2 + CH2 = AC2 + BH2
Mọi người giúp mình bài này với nha,mình cảm ơn nhiều!
(Mọi người không cần vẽ hình đâu ạ!)
\(AB^2=AH^2+BH^2\Rightarrow AH^2=AB^2-BH^2\left(1\right)\left(Pitago\right)\)
\(AC^2=AH^2+CH^2\Rightarrow AH^2=AC^2-CH^2\left(2\right)\left(Pitago\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AC^2-CH^2=AB^2-BH^2\)
\(\Rightarrow AB^2+CH^2=AC^2+BH^2\)
\(\Rightarrow dpcm\)
Ta có \(AB^2-AC^2=\left(BH^2+AH^2\right)-\left(CH^2+AH^2\right)\) \(=BH^2-CH^2\) \(\Rightarrow AB^2+CH^2=AC^2+BH^2\), đpcm.
(Bài này kết quả vẫn đúng nếu không có điều kiện tam giác ABC vuông tại A.)
Cho Δ ABC ⊥ tại A . Đường phân giác BD . Vẽ DH vuông góc với BC ( H ϵ BC )
a) Chứng minh Δ ABD bằng Δ HBC
b) Chứng minh AD bé hơn DC
c) Trên tia đối AB lấy điểm K sao cho AK bằng HC . Chứng minh ΔDKC cân
d) Chứng minh D,H.K không thẳng hàng
Vẽ hình và giải bài giúp ạ em cảm ơn !
a: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
b: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
Do đó: ΔDAK=ΔDHC
Suy ra: DK=DC
hay ΔDKC cân tại D
d: Ta có: ΔDAK=ΔDHC
nên \(\widehat{ADK}=\widehat{HDC}\)
\(\Leftrightarrow\widehat{HDC}+\widehat{KDC}=180^0\)
hay H,D,K thẳng hàng
cho tam giác ABC vuông tại A , có đường cao AH . Vẽ HE vuông góc với AB , vẽ HF vuông góc với AC ( E ϵ AB, F ϵ AC) . Gọi I là trung điểm của BC. a) chứng minh rằng EF = AH
Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ AH vuông góc với BC tại H.
a) Chứng minh: △ABC cân
b) Chứng minh: △AHB = △AHC, từ đó chứng minh AH là tia phân giác của góc A
c) Từ H vẽ HM ⊥ AB (M ϵ AB) và kẻ HN ⊥ AC (N ϵ AC). Chứng minh: △BHM = △HCN
d) Tính độ dài AH
â)Ta có : AB = AC =10 cm (gt)
=> tam giác ABC cân tại A (2 cạnh bên = nhau )
b) Xét tam giác AHB va tam giac AHC ,co :
\(\widehat{AHB}=\widehat{AHC}=90^O\) ( AH là đường cao )
AB =AC =10 cm (gt )
AH là cạnh chung
Do đo : tam giác AHB =tam giác AHC ( cạnh huyền - cạnh góc vuông )
=>\(\widehat{BAH}=\widehat{CAH}\)( hai góc tương ứng )
=>AH là tia phân giác của góc A
c)Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác
Nên :H là trung điểm của BC
=>BH = CH = \(\frac{BC}{2}\)=12/2 = 6 cm
TRẢ LỜI TIẾP CÂU Ở TRÊN NHA ( HỒI NÃY BẤM NHẦM GỬI TRẢ LỜI )
b) Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác
Nên : H là trung điểm của BC
=> BH =CH =\(\frac{BC}{2}=\frac{12}{2}=6cm\)
Xét : tam giác BMH và tam giác HCN , co :
BH = CH = 6cm ( chứng minh trên )
\(\widehat{M}=\widehat{N}=90^o\left(gt\right)\)
\(\widehat{B}=\widehat{C}\) (Vì tam giác ABC cân tại A nên hai góc ở đáy = nhau )
Do do:tm giác BHM = tam giác HCN
đ) Áp dụng định lý pytago vào tam giác AHC vuông tại H
\(AH^2=AC^2-HC^2\) =\(10^2-6^2\)=\(100-36=64\)
=>\(AH=\sqrt{64}=8cm\) OK CHÚC BẠN HỌC TỐT
1.a)
Vì AB=AC => Tam giác ABC cân
b)
Vì △ABC cân
=> góc ABC=góc ACB (1)
góc AHC=góc AHB=90 độ (2)
AB=AC (gt) (3)
Từ (1)(2)(3) => △AHB = △AHC (cạnh huyền-góc nhọn)
=> góc BAH = góc CAH
=> AH là tia phân giác của góc A
c) Vì góc ABC = góc ACB
=> góc MBH = góc NCH
góc BMH = góc HNC =90 độ
=> △BHM = △HCN (g.g)
d) Ta có: AH.BC=AB.AC
=> AH.12=10.10
=> AH = 25/3 (cm)
Cho tam giác ABC có AB = AC = 10cm, BC = 12cm. Vẽ AH vuông góc với BC tại H.
a) Chứng minh: △ABC cân
b) Chứng minh: △AHB = △AHC, từ đó chứng minh AH là tia phân giác của góc A
c) Từ H vẽ HM ⊥ AB (M ϵ AB) và kẻ HN ⊥ AC (N ϵ AC). Chứng minh: △BHM = △HCN
d) Tính độ dài AH
Bạn ơi có gải ko đăng lên đi
1.a)
Vì AB=AC => Tam giác ABC cân
b)
Vì △ABC cân
=> góc ABC=góc ACB (1)
góc AHC=góc AHB=90 độ (2)
AB=AC (gt) (3)
Từ (1)(2)(3) => △AHB = △AHC (cạnh huyền-góc nhọn)
=> góc BAH = góc CAH
=> AH là tia phân giác của góc A
c) Vì góc ABC = góc ACB
=> góc MBH = góc NCH
góc BMH = góc HNC =90 độ
=> △BHM = △HCN (g.g)
d) Ta có: AH.BC=AB.AC
=> AH.12=10.10
=> AH = 25/3 (cm)
Cho tam giác ABC cân tại A có AB = 10cm, BH = 6cm. Vẽ AH vuông góc BC tại H.
a, Tính AH =?
b) Chứng minh tam giác ABH= tam giác ACH , từ đó chứng minh AH là tia phân giác của góc A.
c) Từ H vẽ HM vuông góc AB (M ϵ AB) và kẻ HN vuông góc AC (N ϵ AC) .
Chứng minh : tam giác BHM = tam giác HCN
d) Từ B kẻ Bx vuông góc AB, từ C kẻ Cy vuông góc AC chúng cắt nhau tại O. Tam giác OBC là tam giác gì? Vì sao?
CÁC BẠN VẼ HÌNH GIÚP MÌNH NHA! MÌNH CẢM ƠN CÁC BẠN!
a: Ta có: ΔAHB vuông tại H
=>\(AH^2+HB^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AB=AC
AH chung
Do đó: ΔAHB=ΔAHC
=>\(\widehat{BAH}=\widehat{CAH}\)
=>AH là phân giác của góc BAC
c: Ta có: ΔAHB=ΔAHC
=>BH=CH
Xét ΔBMH vuông tại M và ΔCNH vuông tại N có
BH=CH
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBMH=ΔCNH
d: Xét ΔABO vuông tại B và ΔACO vuông tại C có
AO chung
AB=AC
Do đó: ΔABO=ΔACO
=>OB=OC
=>ΔOBC cân tại O