Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Akira Kinomoto
Xem chi tiết
Nguyệt
25 tháng 11 2018 lúc 21:43

ghi thiếu cmnr đề r :>

\(A=\left|x-2016\right|+\left|x-1\right|=\left|x-2016\right|+\left|-x+1\right|\ge\left|x-2016-x+1\right|\)

\(\Leftrightarrow A\ge\left|2015\right|=2015\)

dấu "=" xảy ra khi \(\left(x-2016\right).\left(-x+1\right)\ge0\)

=> \(1\le x\le2016\)

Vậy Min A =2015 khi và chỉ khi \(1\le x\le2016\)

đăng việt cường
25 tháng 11 2018 lúc 21:53

Nếu  x < 2016 =>\(|x-2016|=2016-x\) .

Khi đó: A=2016-x+x-1=2015

Nếu  \(x\ge2016\) =>\(|x-2016|=x-2016\) .

Khi đó: A=x-2016+x-1=2.x-2017 \(\ge2.2016-2017=2015\)

Vậy Amin=2015 \(\Leftrightarrow\)x=2016.

Thi Oanh
Xem chi tiết
Nguyen Minh Quan
Xem chi tiết
Đỗ Lê Tú Linh
16 tháng 12 2015 lúc 21:34

Vì |x-3| luôn lớn bằng 0 với mọi x

=> |x - 3| + (-100) luôn lớn bằng -100 với mọi x

=> A luôn lớn bằng 100

Dấu "=" xảy ra <=> |x-3| = 0

=> x - 3 = 0

=> x = 3

Vậy Min A = -100 <=> x = 3

Đinh Tuấn Việt
16 tháng 12 2015 lúc 21:34

Ta có |x - 3| > 0

=> |x - 3| + (-100) > - 100

hay A > 100

Vậy GTNN của A là 100 <=> |x - 3| = 0 <=> x - 3 = 0 <=> x = 3

Nhóc còi
Xem chi tiết
soyeon_Tiểu bàng giải
27 tháng 8 2016 lúc 12:03

1) Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2) Ta có: Q = 9 - |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

Lê Minh Anh
27 tháng 8 2016 lúc 12:07

a)Ta có:\(\left|x\right|\ge0\Rightarrow P=\left|x\right|+7\)\(\ge7\)

Đẳng thức xảy ra khi: |x| = 0  => x = 0

Vậy giá trị nhỏ nhất của p là 7 khi x = 0

b) Ta có: \(\left|x\right|\ge0\Rightarrow-\left|x\right|\le0\Rightarrow Q=9-\left|x\right|=9+\left(-\left|x\right|\right)\le9\)

Đẳng thức xảy ra khi: -|x| = 0  => x = 0

Vậy giá trị lớn nhất của Q là 9 khi x = 0

tran ngoc hoa
27 tháng 8 2016 lúc 12:15

1﴿ Ta có: P = |x| + 7 > hoặc = 7

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Min P = 7 khi và chỉ khi x = 0

2﴿ Ta có: Q = 9 ‐ |x| < hoặc = 9

Dấu "=" xảy ra khi và chỉ khi x = 0

Vậy Max Q = 9 khi và chỉ khi x = 0

k nha bị âm r

đinh ngọc nhân
Xem chi tiết
Hoàng Phúc
10 tháng 5 2016 lúc 14:23

viết ại đề đi bn ," | " chứ?

Nguyễn Huyền Trang
10 tháng 5 2016 lúc 14:23

em nghĩ là =0

Hoàng Phúc
11 tháng 5 2016 lúc 14:04

A=|x-1|+|x-2017|

=>A=|x-1|+|2017-x|

Áp dụng bất đẳng thức:|a|+|b| \(\ge\) |a+b|,dấu "=" xảy ra <=> ab \(\ge\) 0

Ta có: A=|x-1|+|2017-x| \(\ge\) |x-1+2017-x|=2016

=>AMin=2016

Dấu "=" xảy ra <=> (x-1)(2017-x) \(\ge\) 0

<=>1 \(\le\)x \(\le\) 2017

Vậy......................

THN
Xem chi tiết
Đinh Đức Hùng
1 tháng 11 2017 lúc 19:31

GTLN :

\(A=\frac{x+1}{x^2+x+1}=\frac{\left(x^2+x+1\right)-x^2}{x^2+x+1}=1-\frac{x^2}{x^2+x+1}\)

Vì \(\frac{x^2}{x^2+x+1}=\frac{x^2}{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\ge0\forall x\) nên \(A=1-\frac{x^2}{x^2+x+1}\le1\forall x\) có GTLN là 1

GTNN : 

\(A=\frac{x+1}{x^2+x+1}=\frac{-\frac{1}{3}x^2-\frac{1}{3}x-\frac{1}{3}+\frac{1}{3}x^2+\frac{4}{3}x+\frac{4}{3}}{x^2+x+1}=\frac{-\frac{1}{3}\left(x^2+x+1\right)+\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}\)

\(=-\frac{1}{3}+\frac{\frac{1}{3}\left(x+2\right)^2}{x^2+x+1}=-\frac{1}{3}+\frac{\left(x+2\right)^2}{3\left(x^2+x+1\right)}\ge-\frac{1}{3}\) có GTNN là \(-\frac{1}{3}\)

tung duong nguyen
Xem chi tiết
Đặng Dương Hồng Ngọc
Xem chi tiết
Đặng Dương Hồng Ngọc
28 tháng 10 2023 lúc 18:33

minh tag dung cho

 

HT.Phong (9A5)
28 tháng 10 2023 lúc 18:47

BĐT: \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Rightarrow m=\left|x-1\right|+\left|x-5\right|\)

\(=\left|x-1\right|+\left|-\left(x-5\right)\right|\)

\(=\left|x-1\right|+\left|5-x\right|\)

Theo BĐT ta có: \(m=\left|x-1\right|+\left|5-x\right|\ge\left|x-1+5-x\right|=4\)

Vậy: \(m_{min}=4\)

Đặng Thu Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 8 2021 lúc 13:44

Ta có: \(\left|x-\dfrac{2}{3}\right|\ge0\forall x\)

\(\Leftrightarrow\left|x-\dfrac{2}{3}\right|-1\ge-1\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)

nguyễn thu phượng
Xem chi tiết
Dương Lam Hàng
14 tháng 7 2018 lúc 9:57

\(A=\left|x+1\right|+\left|y-2\right|\ge\left|x+1+y-2\right|=\left|x+y-1\right|=\left|5-1\right|=4\)

Dấu "=" xảy ra khi và chỉ khi: \(\left(x+1\right)\left(y-2\right)=\left|\left(x+1\right)\left(y-2\right)\right|\)

                                         <=> (x+1)(y-2) lớn hơn hoặc bằng 0

<=> x+1 lớn hơn hoặc bằng 0 và y-2 lớn hơn hoặc bằng 0

       x+1 bé hơn hoặc bằng 0 và y-2 bé hơn hoặc bằng 0

<=> x lớn hơn hoặc bằng -1 và y lớn hơn hoặc bằng 2

       x bé hơn hoặc bằng -1 và y bé hơn hoặc bằng 2

<=> x lớn hơn hoặc bằng 2

       x bé hơn hoặc bằng -1

Vậy Amin = 4 khi và chỉ khi x lớn hơn hoặc bằng 2 hoặc x bé hơn hoặc bằng -1