Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Hoàng
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 8 2021 lúc 14:01

\(P=\sqrt{y}\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}=\left(6-\sqrt{x}-\sqrt{z}\right)\left(\sqrt{x}+2\sqrt{z}\right)+3\sqrt{zx}\)

\(P=-x+6\sqrt{x}-2z+12z=-\left(\sqrt{x}-3\right)^2-2\left(\sqrt{z}-3\right)^2+27\le27\)

\(P_{max}=27\) khi \(\left(x;y;z\right)=\left(9;0;9\right)\)

Bùi Minh Quân
Xem chi tiết
Lê Song Phương
Xem chi tiết
Nguyễn Đức Trí
20 tháng 8 2023 lúc 10:21

Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)

\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)

\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)

Tương tự ta được

\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)

\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)

\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :

\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)

\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)

\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)

Nguyễn Mạnh Cường
Xem chi tiết
Nguyễn Mạnh Cường
27 tháng 11 2019 lúc 19:33

sai đè nha:4\(\sqrt{yz}\)

Khách vãng lai đã xóa
Nguyễn Văn Huân
27 tháng 11 2019 lúc 19:37

cây gì lớn nhất hành tinh

Khách vãng lai đã xóa
bongmin
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 11 2021 lúc 16:11

\(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+x+1\le x^2+2x+1\\2y^2+y+1\le y^2+2y+1\\2z^2+z+1\le z^2+2z+1\end{matrix}\right.\)

\(\Rightarrow P\le\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}=x+y+z+3=4\)

\(P_{max}=4\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị

Nga Nguyễn
Xem chi tiết
Phương Minh
Xem chi tiết
Xem chi tiết
Agatsuma Zenitsu
30 tháng 1 2020 lúc 17:55

Theo đề bài ta có:

\(2\left(y^2+1\right)+6\ge\left(x^4+1\right)+\left(y^4+4\right)+\left(z^4+1\right)\ge2x^2+4y^2+2z^2\)

\(\Rightarrow0< x^2+y^2+z^2\le4\)

Đặt: \(t=x^2+y^2+z^2.Đkxđ:0< t\le4\)

Ta có: \(\sqrt{2}\left(x+y\right)y=\sqrt{2x}y+\sqrt{2z}y\le\frac{2x^2+y^2}{2}+\frac{2z^2+y^2}{2}=x^2+y^2+z^2\)

\(P\le x^2+y^2+z^2+\frac{1}{x^2+y^2+z^2+1}=t+\frac{1}{t+1}=f\left(t\right)\)

Xét hàm: \(f\left(t\right)=t+\frac{1}{t+1}\) liên tục trên \(\left(0;4\right)\) 

\(f'\left(t\right)=1-\frac{1}{\left(t+1\right)^2}>0\forall t\in\left\{0;4\right\}\)nên:

\(\Rightarrow f\left(t\right)\) đồng biến trên \(\left\{0;4\right\}\)

\(\Rightarrow P\le f\left(t\right)\le f\left(4\right)=\frac{21}{5}\forall t\in\left(0;4\right)\)

\(\Rightarrow P_{Min}=\frac{21}{5}\Leftrightarrow\orbr{\begin{cases}x=z=1\\y=\sqrt{2}\end{cases}}\)

Vậy ....................

Khách vãng lai đã xóa

ミ★๖ۣۜBăηɠ ๖ۣۜBăηɠ ★彡

có cách nào không dùng hàm k ???

Khách vãng lai đã xóa
Agatsuma Zenitsu
30 tháng 1 2020 lúc 18:04

Hmmm h thì mình chưa ra nhưng bạn muốn theo cách gì để mình tìm?

Khách vãng lai đã xóa
Dương Thiên Thanh
Xem chi tiết