Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 7 2018 lúc 6:20

a, Dễ thấy  A M B ^ = 90 0 hay E M F ^ = 90 0  tiếp tuyến CM,CA

=> OC ⊥ AM =>  O E M ^ = 90 0 Tương tự =>  O F M ^ = 90 0

Chứng minh được ∆CAO = ∆CMO =>  A O C ^ = M O C ^

=> OC là tia phân giác của A M O ^

Tương tự OD là tia phân giác của  B O M ^  suy ra OC ⊥ OD <=>  C O D ^

b, Do ∆AOM cân tại O nên OE là đường phân giác đồng thời là đường cao

=>  O E M ^ = 90 0  chứng minh tương tự  O F M ^ = 90 0

Vậy MEOF là hình chữ nhật

c, Gọi I là trung điểm CD thì I là tâm đường tròn đường kính CD và IO=IC=ID. Có ABDC là hình thang vuông tại A và B nên IO//AC//BD và IO vuông góc với AB. Do đó AB là tiếp tuyến của đường tròn đường kính CD.

Kim Tae Huynh  123
Xem chi tiết
Lê Đức Chí
Xem chi tiết
Tiểu Ngải
Xem chi tiết
đạt trần tiến
1 tháng 6 2016 lúc 14:31

Sorry nha!!!! Mình không biết

vì mình mới học lớp 4 thôi

Phạm Bảo châu
Xem chi tiết
thành vinh lê
Xem chi tiết
thành vinh lê
Xem chi tiết
Thảo Lê
Xem chi tiết
Hoa Nguyễn
Xem chi tiết
Nguyễn Thanh Thảo
Xem chi tiết
Nguyễn Hoàng Bảo Nhi
18 tháng 4 2020 lúc 20:54

Bạn tự vẽ hình nhé : 

1.Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CM\perp OM,CA\perp OA\)

\(\Rightarrow CAOM\)nội tiếp đường tròn đường kính OC

Tương tự DMOB nội tiếp đường tròn đường kính OD

2 . Vì CM,CA là tiếp tuyến của (O)

\(\Rightarrow CM=CA,OC\) là phân giác \(\widehat{AOM}\)

Tương tự DM = DB , OD là phân giác ^BOM

Mà \(\widehat{AOM}+\widehat{MOB}=180^0\)

\(\Rightarrow OC\perp OD\)

Lại có ; \(OM\perp CD\Rightarrow CM.DM=OM^2\Rightarrow CM.DM=R^2\)

Mà : \(CM=CA,DM=DB\Rightarrow AC.BD=R^2\Rightarrow AC.3R=R^2\Rightarrow AC=\frac{R}{3}\)

\(\Rightarrow S_{ABCD}=\frac{1}{2}AB\left(BD+CA\right)=\frac{1}{2}.2R.\left(3R+\frac{R}{3}\right)=\frac{10R^2}{3}\)

3.Vì CM,CA là tiếp tuyến của (O) 

\(\Rightarrow CO\perp AM=E\) là trung điểm AM

Tương tự \(OD\perp BM=F\) là trung điểm BM

\(\Rightarrow MN\) là đường trung bình \(\Delta ABC\Rightarrow EF//MN\)

Mà \(OE\perp ME,OF\perp MF,MN\perp ON\)

\(\Rightarrow M,E,N,O,F\in\) đường tròn đường kính OM 

\(\Rightarrow EFNO\) nội tiếp 

\(\Rightarrow\widehat{EFO}+\widehat{ENO}=180^0\)

Mà \(\widehat{NEF}+\widehat{ENO}=180^0\) ( EF // AB => EF//NO ) 

\(\Rightarrow EFON\) là hình thang cân 

Khách vãng lai đã xóa