Tính
\(\dfrac{5^4}{25^5}\).\(\dfrac{20^4}{4^5}\)=
a,\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}\)
b,\(\left(1+\dfrac{2}{3}-\dfrac{1}{4}\right).\left(\dfrac{4}{5}-\dfrac{3}{4}\right)^2\)
c,\(23\dfrac{1}{3}:\left(\dfrac{-5}{7}\right)-13\dfrac{1}{3}:\left(\dfrac{-5}{7}\right)\)
d,1:\(\left(\dfrac{2}{3}-\dfrac{3}{4}\right)^2\)
e,\(\dfrac{45^{10}.5^{20}}{75^{15}}\)
e: \(=\dfrac{5^{30}\cdot3^{20}}{3^{15}\cdot5^{30}}=3^5=243\)
tính
\(1,25:\dfrac{15}{20}+\left(25\%-\dfrac{5}{6}\right);4\dfrac{2}{3}\)
\(1,25:\dfrac{15}{20}+\left(25\%-\dfrac{5}{6}\right):4\dfrac{2}{3}\)
\(=\dfrac{5}{4}.\dfrac{4}{3}+\left(\dfrac{1}{4}-\dfrac{5}{6}\right).\dfrac{3}{14}\)
\(=\dfrac{5}{3}+\dfrac{7}{12}.\dfrac{3}{14}\)
\(=\dfrac{5}{3}+-\dfrac{1}{8}\)
\(=\dfrac{37}{24}\)
\(1,25:\dfrac{15}{20}+\left(25\%-\dfrac{5}{6}\right):4\dfrac{2}{3}\)
\(=\dfrac{5}{4}:\dfrac{3}{4}+\left(\dfrac{1}{4}-\dfrac{5}{6}\right):\dfrac{14}{3}\)
\(=\dfrac{5}{4}.\dfrac{4}{3}+\left(\dfrac{-7}{12}\right).\dfrac{3}{14}\)
= \(\dfrac{5}{3}-\dfrac{1}{8}=\dfrac{37}{24}\)
\(\dfrac{4^5.9^4}{8^3.27^3}\);\(\dfrac{4^{20}.3^{35}}{2^{37}.27^{12}}\)\(;\dfrac{5^4.20^4}{25^5.4^5};\dfrac{2^{15}.9^4}{6^6.8^3}\)
\(\dfrac{4^5\cdot9^4}{8^3\cdot27^3}=\dfrac{\left(2^2\right)^5\cdot\left(3^2\right)^4}{\left(2^3\right)^3\cdot\left(3^3\right)^3}=\dfrac{2^{10}\cdot3^8}{2^9\cdot3^9}=\dfrac{2}{3}\)
\(\dfrac{4^{20}\cdot3^{35}}{2^{37}\cdot27^{12}}=\dfrac{\left(2^2\right)^{20}\cdot3^{35}}{2^{37}\cdot\left(3^3\right)^{12}}=\dfrac{2^{40}\cdot3^{35}}{2^{37}\cdot3^{36}}=\dfrac{2^3}{3}\)
\(\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^5\cdot5^5\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{100}\)
\(\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{2^6\cdot3^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=3^2\)
Tính rồi so sánh.
a) \(\dfrac{2}{9}+\dfrac{5}{9}\) và \(\dfrac{5}{9}+\dfrac{2}{9}\) b) \(\dfrac{3}{25}+\dfrac{4}{25}+\dfrac{7}{25}\) và \(\dfrac{3}{25}+\dfrac{7}{25}+\dfrac{4}{25}\)
a) \(\dfrac{2}{9}+\dfrac{5}{9}=\dfrac{7}{9};\dfrac{5}{9}+\dfrac{2}{9}=\dfrac{7}{9}\)
Vậy: \(\dfrac{2}{9}+\dfrac{5}{9}=\dfrac{5}{9}+\dfrac{2}{9}\)
b) \(\dfrac{3}{25}+\dfrac{4}{25}+\dfrac{7}{25}=\dfrac{14}{25};\dfrac{3}{25}+\dfrac{7}{25}+\dfrac{4}{25}=\dfrac{14}{25}\)
Vậy: \(\dfrac{3}{25}+\dfrac{4}{25}+\dfrac{7}{25}=\dfrac{3}{25}+\dfrac{7}{25}+\dfrac{4}{25}\)
Tim x:
a) \(\dfrac{13+x}{20}=\dfrac{3}{4}\)
b) \(\dfrac{23-x}{25}=\dfrac{4}{5}\)
`(13+x)/20 = 3/4`
`(13+x) xx4=3xx20`
`(13+x)xx4=60`
`13+x=60:4`
`13+x=15`
`x=15-13`
`x=2`
__
`(23-x)/25 =4/5`
`(23-x)xx5=4xx25`
`(23-x)xx5=100`
`23-x=100:5`
`23-x=20`
`x=23-20`
`x=3`
Tính GTLN của biểu thức A.
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}\)(đk: \(x\ge0,x\ne1,x\ne4\))
B2. Giải pt
\(\sqrt{x-3}+\sqrt{y-5}+\sqrt{z-4}=20-\dfrac{4}{\sqrt{x-3}}-\dfrac{9}{\sqrt{y-5}}-\dfrac{25}{\sqrt{z-4}}\)
\(A=\dfrac{1-\sqrt{x}}{\sqrt{x}+2}=\dfrac{3-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\dfrac{3}{\sqrt{x}+2}-1\)
Có \(\sqrt{x}\ge0\Leftrightarrow\sqrt{x}+2\ge2\Leftrightarrow\dfrac{3}{\sqrt{x}+2}\le\dfrac{3}{2}\)\(\Leftrightarrow\dfrac{3}{\sqrt{x}+2}-1\le\dfrac{1}{2}\)\(\Leftrightarrow A\le\dfrac{1}{2}\)
Dấu "=" xảy ra khi x=0 (tm)
Vậy \(A_{max}=\dfrac{1}{2}\)
Bài 2:
Đk: \(x\ge3;y\ge5;z\ge4\)
Pt\(\Leftrightarrow\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}+\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}+\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}=20\)
Áp dụng AM-GM có:
\(\sqrt{x-3}+\dfrac{4}{\sqrt{x-3}}\ge2\sqrt{\sqrt{x-3}.\dfrac{4}{\sqrt{x-3}}}=4\)
\(\sqrt{y-5}+\dfrac{9}{\sqrt{y-5}}\ge6\)
\(\sqrt{z-4}+\dfrac{25}{\sqrt{z-4}}\ge10\)
Cộng vế với vế \(\Rightarrow VT\ge20\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{x-3}=\dfrac{4}{\sqrt{x-3}}\\\sqrt{y-5}=\dfrac{9}{\sqrt{y-5}}\\\sqrt{z-4}=\dfrac{25}{\sqrt{z-4}}\end{matrix}\right.\)\(\Leftrightarrow x=7;y=14;z=29\) (tm)
Vậy...
a,\(\dfrac{5^4.20^4}{25^5.4^5}\)
b,\(\dfrac{2^7.9^3}{6^5.8^2}\)
c,\(\dfrac{45^{10}.5^{20}}{75^5}\)
d,\(\left(0,8\right)^5\)
e,\(\dfrac{2^{15}.9^4}{6^6.8^3}\)
f,\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}\)
a, \(\dfrac{5^4.20^4}{25^5.4^5}=\dfrac{5^4.2^8.5^4}{5^{10}.2^{10}}=\dfrac{1}{5^2.2^2}=\dfrac{1}{25.4}=\dfrac{1}{100}\)
b, \(\dfrac{2^7.9^3}{6^5.8^2}=\dfrac{2^7.3^6}{2^5.3^5.2^6}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
c, \(\dfrac{45^{10}.5^{20}}{75^5}=\dfrac{5^{10}.3^{20}.5^{20}}{3^5.5^{10}}=5^{20}.3^{15}\)
d, \(\left(0,8\right)^5=\left(0,1\right)^5.8^5=\dfrac{1}{100000}.32768=0,32768\)
e, \(\dfrac{2^{15}.9^4}{6^6.8^3}=\dfrac{2^{15}.3^8}{2^6.3^6.2^9}=3^2=9\)
d, \(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}.\left(2^{20}+1\right)}{2^{30}.\left(2^{20}+1\right)}=2^{10}=1024\)
Chúc bạn học tốt!!!
\(\text{a) }\dfrac{5^4\cdot20^4}{25^5\cdot4^5}=\dfrac{5^4\cdot\left(5\cdot4\right)^4}{\left(5^2\right)^5\cdot4^5}=\dfrac{5^4\cdot5^4\cdot4^4}{5^{10}\cdot4^5}=\dfrac{5^8\cdot4^4}{5^{10}\cdot4^5}=\dfrac{1}{5^2\cdot4}=\dfrac{1}{25\cdot4}=\dfrac{1}{100}\)
\(\text{b) }\dfrac{2^7\cdot9^3}{6^5\cdot8^2}=\dfrac{2^7\cdot\left(3^2\right)^3}{\left(2\cdot3\right)^5\cdot\left(2^3\right)^2}=\dfrac{2^7\cdot3^6}{2^5\cdot3^5\cdot2^6}=\dfrac{2^7\cdot3^6}{2^5\cdot2^6\cdot3^5}=\dfrac{2^7\cdot3^6}{2^{11}\cdot3^5}=\dfrac{3}{2^4}=\dfrac{3}{16}\)
\(\text{c) }\dfrac{45^{10}\cdot5^{20}}{75^5}=\dfrac{\left(5\cdot9\right)^{10}\cdot5^{20}}{\left(25\cdot3\right)^5}=\dfrac{5^{10}\cdot9^{10}\cdot5^{20}}{25^5\cdot3^5}=\dfrac{5^{10}\cdot5^{20}\cdot\left(3^2\right)^{10}}{\left(5^2\right)^5\cdot3^5}=\dfrac{5^{30}\cdot3^{20}}{5^{10}\cdot3^5}=5^{20}\cdot3^{15}\)
\(\text{d) }\left(0.8\right)^5=\left(\dfrac{8}{10}\right)^5=\left(\dfrac{4}{5}\right)^5=\dfrac{4^5}{5^5}=\dfrac{64}{3125}\)
\(\text{e) }\dfrac{2^{15}\cdot9^4}{6^6\cdot8^3}=\dfrac{2^{15}\cdot\left(3^2\right)^4}{\left(2\cdot3\right)^6\cdot\left(2^3\right)^3}=\dfrac{2^{15}\cdot3^8}{2^6\cdot3^6\cdot2^9}=\dfrac{2^{15}\cdot3^8}{2^6\cdot2^9\cdot3^6}=\dfrac{2^{15}\cdot3^8}{2^{15}\cdot3^6}=3^2=9\)
\(f\text{) }\dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
1, A= \(\dfrac{-3}{4}.\left(0,125-1\dfrac{1}{2}\right):\dfrac{33}{16}-25\%\)
2, B= \(1\dfrac{13}{15}.0,75-\left(\dfrac{11}{20}+25\%\right):\dfrac{7}{3}\)
3, C= \(\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)
4, D= \(6\dfrac{5}{12}:2\dfrac{5}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\)
\(1,A=-\dfrac{3}{4}.\left(0,125-1\dfrac{1}{2}\right):\dfrac{33}{16}-25\%\)
\(A=-\dfrac{3}{4}.\left(0,125-\dfrac{3}{2}\right):\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=-\dfrac{3}{4}.\left(-\dfrac{11}{8}\right):\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=\dfrac{33}{32}:\dfrac{33}{16}-\dfrac{1}{4}\)
\(A=\dfrac{33}{32}.\dfrac{16}{33}-\dfrac{1}{4}\)
\(A=\dfrac{1}{2}-\dfrac{1}{4}\)
\(A=\dfrac{2}{4}-\dfrac{1}{4}\)
\(A=\dfrac{1}{4}\)
\(D=6\dfrac{5}{12}:2\dfrac{5}{4}+11\dfrac{1}{4}.\left(\dfrac{1}{3}-\dfrac{1}{5}\right)\)
\(D=\dfrac{77}{12}:\dfrac{13}{4}+\dfrac{45}{4}.\dfrac{2}{15}\)
\(D=\dfrac{77}{39}+\dfrac{3}{2}\)
\(D=\dfrac{271}{78}\)
\(C=\dfrac{5}{16}:0,125-\left(2\dfrac{1}{4}-0,6\right).\dfrac{10}{11}\)
\(C=\dfrac{5}{16}:0,125-\left(\dfrac{9}{4}-0,6\right).\dfrac{10}{11}\)
\(C=\dfrac{5}{16}:0,125-\dfrac{33}{20}.\dfrac{10}{11}\)
\(C=\dfrac{5}{2}-\dfrac{3}{2}\)
\(C=1\)
\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=2^{10}=1024\)