\(x^4+4x^2y+3y^2+6y-16=0\)
tìm nghiệm nguyên x;y
Tìm số nguyên x biết
a,3x+3y-2xy=7
b,xy+2x+y+11=0
c,xy+x-y=4
d,2x.(3y-2)+(3y-2)=12
e,3x+4y-xy=15
f,xy+3x-2y=11
g,xy+12=x+y
h,xy-2x-y=-6
i,xy+4x=25+5y
ii,2xy-6y+x=9
iii,xy-x+2y=3
k,2.x^2.y-x^2-2y-2=0
l,x^2.y-x+xy=6
Bài 1:
Tìm các số nguyên x,y biết;
a,x.(2y-1)=6y+5 b,xy-2x+3y=4
Bài 2: Tìm các số tự nhiên x,n và số nguyên tố p,q biết:
a,pq+13;5p+q đều là số nguyên tố
b,(x^2+4x+32)(x+4)
giải hệ
1, \(\hept{\begin{cases}x^4+5y=6\\x^2y^2+5x=6\end{cases}}\)
2,tìm m để hệ có nghiệm
\(\hept{\begin{cases}x^3-12x-y^3+6y^2-16=0\\4x^2+2\sqrt{4-x^2}-5\sqrt{4y-y^2}+m=0\end{cases}}\)
giải phương trình nghiệm nguyên:\(4x^4+3y^4+3x^2+6y^2-10=0\)
giải các hệ phương trình
9x-6y=4 và 3(4x-3y)=-3x+y+7
3(x+1)+2y=-x và 5(x+y)=-3x+y-5
2(2x+3y)=3(2x-3y)+10 và 4x-3y=4(6y-2x)+3
Tìm nghiệm nguyên của pt: \(x^2+2y^2+2xy+3y-4=0\)0
\(\orbr{\begin{cases}\hept{\begin{cases}\text{x=2}\\y=0\end{cases}}\\\hept{\begin{cases}\text{x=\text{-}1}\\y=1\end{cases}}\end{cases}}\)
\(x^2+2y^2+2xy+3y-4=0\)
\(\Leftrightarrow x^2+2xy+y^2+y^2+2.\frac{3}{2}y+\frac{9}{4}-\frac{25}{4}=0\)
\(\Rightarrow\left(x+y\right)^2+\left(y+\frac{3}{2}\right)^2=\frac{25}{4}\)
Do x,y nguyên
\(\Rightarrow\left(y+\frac{3}{2}\right)^2=\orbr{\begin{cases}\frac{25}{4}\\\frac{9}{4}\end{cases}}\)(chọn những số
\(\Rightarrow y=...\)
\(\Rightarrow x=...\)
\(x^2+2y^2+2xy+3y-4=0\)\(\Leftrightarrow x^2+2yx+\left(2y^2+3y-4\right)=0\)
Coi đây là phương trình theo ẩn x thì \(\Delta=\left(2y\right)^2-4\left(2y^2+3y-4\right)=-4y^2-12y+16\)
Để phương trình có nghiệm thì \(\Delta\ge0\)hay \(-4y^2-12y+16\ge0\Leftrightarrow y^2+3y-4\le0\Leftrightarrow\left(y+4\right)\left(y-1\right)\le0\)
TH1: \(\hept{\begin{cases}y+4\ge0\\y-1\le0\end{cases}}\Leftrightarrow\hept{\begin{cases}y\ge-4\\y\le1\end{cases}}\)hay \(-4\le y\le1\)
TH2: \(\hept{\begin{cases}y+4\le0\\y-1\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}y\le-4\\y\ge1\end{cases}}\)(loại)
Vậy \(-4\le y\le1\)mà y nguyên nên \(y\in\left\{-4;-3;-2;-1;0;1\right\}\)
Thay lần lượt các giá trị của y vào phương trình đã cho, ta được:
*) \(y=-4\Rightarrow x=4\)
*) \(y=-3\Rightarrow x\in\left\{1;5\right\}\)
*) \(y=-2\)(Không có giá trị nguyên của x)
*) \(y=-1\)(Không có giá trị nguyên của x)
*) \(y=0\Rightarrow x\in\left\{\pm2\right\}\)
*) \(y=1\Rightarrow x=-1\)
Vậy \(\left(x,y\right)\in\left\{\left(4,-4\right);\left(1,-3\right);\left(5,-3\right);\left(\pm2,0\right);\left(-1,1\right)\right\}\)
Tìm x, y nguyên dương biết: \(x^2+2y^2+2xy-4x-3y-2=0\)
Bạn tham khảo:
Tìm nghiệm nguyên dương của phương trình x2+2y2+2xy-4x-3y-2=0 - Hoc24
Tìm x,y để các phương trình sau nghiệm nguyên:
a, x^2 + y^2 - 2x - 6y + 10 = 0
b, 4x^2 + y^2 + 4x - 6y - 24 = 0
c ,x^2 + y^2 - x - y - 8 = 0
Giải phương trình nghiệm nguyên:\(x^2+2y^2-2xy+4x-3y-26=0\)