Cho ΔΔABCcó \(\widehat{B}=2\widehat{C}\),AB= 8 cm , BC=10cm.
a) Tính AC
b) Nếu ba cạnh của tam giác trên là ba số tự nhiên liên tiếp thì mỗi cạnh là bao nhiêu?
Bài 1: Tam giác ABC co góc B=2gócC, AB=8, BC=10
a)tính ac
b) Nếu ba cạnh của tam giác trên là ba số tự nhiên liên tiếp thì mỗi cạnh có số do là bao nhiêu
Bài 2: cho tam giác ABC đều M là trng diểm BC. Lấy D thuộc AB, E thuộc AC . Sao cho góc DME=60dộ
Cm:
A)BD×CE=BC2/4
B) DM,EM lần lượt là phân giác góc BDE và CED
C) Chu vi tam giác ADE không đổi
Cho \(\Delta\)ABC có \(\widehat{B}=2\widehat{C}\),AB= 8 cm , BC=10cm.
a) Tính AC
b) Nếu ba cạnh của tam giác trên là ba số tự nhiên liên tiếp thì mỗi cạnh là bao nhiêu?
Bạn vào đây - Câu hỏi của Trần Thiên Kim - Toán lớp 8 | Học trực tuyến
cho tam giác abc có bc=a ac=b ab=c
a/chứng minh rằng nếu góc a = 2 lần góc b thì a^2=b^2+bc và ngược lại
b/tính độ dài các cạnh của tam giác abc thỏa điều kiện trên biết độ dài ba cạnh tam giác là 3 số tự nhiên liên tiếp
Cho ΔABC có \(\widehat{B}=2\widehat{C}\) , AB=8cm, BC=10cm
a, Tính AC
b, Nếu ba cạnh của tam giác trên là ba số tự nhiên liên tiếp thì mỗi cạnh là bao nhiêu?
Kẻ tia phân giác BK cắt AC tại K
\(\Rightarrow\widehat{ABK}=\widehat{CBK}=\dfrac{\widehat{ABC}}{2}\)
Mà ta có \(\widehat{B}=2\widehat{C}\)
Suy ra \(\widehat{ABK}=\widehat{KBC}=\widehat{KCB}\)
Xét △BKC có
\(\widehat{KBC}=\widehat{KCB}\)(cmt)
Suy ra △BKC cân tại K\(\Rightarrow BK=KC\)
Xét △ABK và △ACB có
\(\widehat{A}\) chung
\(\widehat{ABK}=\widehat{KCB}\)(cmt)
Suy ra △ABK ∼ △ACB(g.g)
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BK}{BC}\Rightarrow AC.BK=AB.BC\Rightarrow AC.BK=8.10=80\Rightarrow AC.KC=80\left(1\right)\)
Ta có △ABK ∼ △ACB\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AK}{AB}\Rightarrow AC.AK=AB^2\Rightarrow AC.AK=8^2=64\left(2\right)\)
Cộng (1),(2)\(\Rightarrow AC.KC+AC.AK=80+64\Rightarrow AC\left(KC.AK\right)=144\Rightarrow AC.AC=144\Rightarrow AC^2=144\Rightarrow AC=12\left(cm\right)\)
b) Giả sử AC>BC>AB
Đặt AB=x(x∈N*)\(\Rightarrow BC=x+1\Rightarrow AC=x+2\)
Theo câu a, ta có △ABK ∼ △ACB
\(\Rightarrow\dfrac{AB}{AC}=\dfrac{BK}{BC}\Rightarrow AB.BC=BK.AC\Rightarrow AB.BC=KC.AC\Rightarrow x\left(x+1\right)=\left(x+2\right)KC\left(3\right)\)
ta có △ABK ∼ △ACB\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AK}{AB}\Rightarrow AB^2=AK.AC\Rightarrow x^2=\left(x+2\right)AK\left(4\right)\)
Cộng (3),(4)\(\Rightarrow x\left(x+1\right)+x^2=\left(x+2\right)KC+\left(x+2\right).AK\Leftrightarrow x^2+x+x^2=\left(x+2\right)\left(KC+AK\right)\Leftrightarrow2x^2+x=\left(x+2\right).AC\Leftrightarrow2x^2+x=\left(x+2\right)^2\Leftrightarrow2x^2+x=x^2+4x+4\Leftrightarrow x^2-3x-4=0\Leftrightarrow x^2+x-4x-4=0\Leftrightarrow x\left(x+1\right)-4\left(x+1\right)=0\Leftrightarrow\left(x+1\right)\left(x-4\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x+1=0\\x-4=0\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}x=-1\left(ktm\right)\\x=4\left(tm\right)\end{matrix}\right.\)
Vậy x=4\(\Rightarrow AB=4\Rightarrow BC=5\Rightarrow AC=6\)
Cho tam giác ABC có B=2C
1,biết AB=8cm, BC=10cm tính AC
2, Nếu ba cạnh của tam giác ABC có độ dài là ba số tự nhiên lên tiếp. Khi đó hãy tính độ dài mỗi cạnh
Cho tam giác ABC có \(\widehat{B}=2\widehat{C}\) , AB=8 cm, BC=10 cm.
a. Tính AC.
b. Nếu 3 cạnh của tam giác trên là 3 số tự nhiên liên tiếp thì mỗi cạnh là bao nhiêu?
Cần gấp câu b =(((
ok, lm câu b; hình tự vẽ
a) Câu a đã kẻ đường phụ chưa?
b) Gọi 3 cạnh của \(\Delta ABC\) là AB = c; AC = b; BC = a
Theo câu a ta có: b2 = c ( a + c)
Do \(\widehat{B}>\widehat{C}\) => b > c
+ Nếu b = c + 1
=> ( c + 1 )2 = c ( a + c)
=> c2 + 2c + 1 = ac + c2
=> 2c - ac +1 = 0
=> c ( a - 2 ) = 1
=> c = 1; a - 2 = 1 => a = 3; b = 2; c = 1
=> Loại vì không thỏa mãn BĐT tam giác
+ Nếu b = c + 2
=> ( c + 2 )2 = c ( a + c)
=> c2 + 4c + 4 = ac + c2
=> c ( a - 4 ) = 4
=> \(\left[{}\begin{matrix}c\left(a-4\right)=1.4\\c\left(a-4\right)=4.1\\c\left(a-4\right)=2.2\end{matrix}\right.\) => \(\left[{}\begin{matrix}c=1;a=8\left(L\right)\\c=4;a=5\\c=2;a=6\left(L\right)\end{matrix}\right.\)
=> \(a=5;c=4;b=6\)
Vậy 3 cạnh lần lượt của tam giác là 4;5;6
Không có TH b = c + x ( x > 2 )
Cho tam giác ABC vuông tại B và \(\widehat{ACB}=30^0\), tia phân giác góc A cắt cạnh BC tại D. Trên cạnh AC lấy E sao cho : AE = AB.
a) Tính số đo các góc\(\widehat{BAC},\widehat{ADC}\)
b) CM : \(\Delta ABD=\Delta AED\)
c) CM : DE là trung trực của đoạn AC
Bài làm
a) Xét ∆ABC vuông tại B có:
^BAC + ^C = 90°
Hay ^BAC + 30° = 90°
=> ^BAC = 60°
Vì AD là phân giác của góc BAC.
=> ^DAC = 60°/2 = 30°
Xét tam giác ADC có:
^DAC + ^ACD + ^ADC = 180°
Hay 30° + 30° + ^ADC = 180°
=> ^ADC = 180° - 30° - 30°
=> ^ADC = 120°
b) Xét tam giác ABD và tam giác AED có:
AB = AE ( gt )
^BAD = ^EAD ( Do AD phân giác )
Cạnh AD chung.
=> ∆ABD = ∆AED ( c.g.c )
c) Vì ∆ABD = ∆AED ( cmt )
=> ^ABD = ^AED = 90°
=> DE vuông góc với AC tại E (1)
Ta có: ^DAC = ^DCA = 30°
=> ∆DAC cân tại D.
=> AD = DC
Xét tam giác DEA và tam giác DEC có:
Góc vuông: ^DEA = ^DEC ( = 90° )
Cạnh huyền AD = DC ( cmt )
Góc nhọn: ^DAC = ^DCA ( cmt )
=> ∆DEA = ∆DEC ( g.c.g )
=> AE = EC
=> E là trung điểm của AC. (2)
Từ (1) và (2) => DE là trung trực của AC ( đpcm )
Cho tam giác ABC , \(\widehat{B}=2\widehat{C}\)
a) Tính AC biết AB = 8 cm, BC = 10cm
b) Nếu 3 cạnh của tam giác trên là 3 số tự nhiên liên tiếp thì mỗi cạnh là bao nhiêu?
( Bạn nào biết cách giải thì cho mình tham khảo nhé! Cảm ơn!)
\(\Leftrightarrow\frac{AB}{AI}=\frac{BC}{IC}=\frac{AB+BC}{AI+IC}=\frac{18}{AC}\Rightarrow AI=\frac{AB.AC}{18}=\frac{4}{9}.AC\)
tgiac ABC đồng dạng AIB( chung A, ABI=ACB)
\(\Rightarrow\frac{AB}{AC}=\frac{AI}{AB}\Leftrightarrow\frac{8}{AC}=\frac{\frac{4}{9}.AC}{8}\Rightarrow\frac{4}{9}AC^2=64\)
Giải AC
a/ Cho BI là tia ph/giác góc ABC
\(\Rightarrow\frac{AB}{BC}=\frac{AI}{IC}=\frac{8}{10}=\frac{4}{5}\)
Chờ xíu mk làm típ
Bài 1: Cho tam giác ABC vuông tại , đường phân giác AD. Tính độ dài AB,AC biết DB=15cm, DC=20cm.
Bài 2: Cho hình bình hành ABCD (\(\widehat{A}< \widehat{B}\)). Gọi E là hình chiếu của C trên AB, K là hình chiếu của C trên AD, H là hình chiếu của B trên AC. Chứng minh rằng:
a) AB.AE=AC.AH
b) BC.AK=AC.HC
c) AB.AE+AD.AK=AC\(^2\)
Bài 3: Cho tam giác ABC. Một đường thẳng song song với BC cắt các cạnh AB,AC theo thứ tự tại D và E. Gọi G là một điểm trên cạnh BC. Tính diện tích tứ giác ADGE nếu biết diện tích tam giác ABC=16\(cm^2\), diện tích tam giác ADE=9\(cm^2\)