Bài 1:
a) \(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{7}{2}\) và y-x=48
Bài 1: Tìm x; y ϵ \(ℤ\)
a) 2x - y\(\sqrt{6}\) = 5 + (x + 1)\(\sqrt{6}\)
b) 5x + y - (2x -1)\(\sqrt{7}\) = y\(\sqrt{7}\) + 2
Bài 2: So sánh M và N
M = \(\dfrac{\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{6}{4}+\dfrac{6}{5}+\dfrac{6}{7}-\dfrac{6}{11}}\)
N = \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{6}{2}+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}\)
Bài 3: Chứng minh:
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
giúp em với. em cần gấp
Tìm x,y biết:
a, x-\(\dfrac{1}{2}\)=|\(\dfrac{3}{7}\)|
b, (x-1)=6
c, |x+1| + |y-2|=0
d, \(\dfrac{x}{3}\)=\(\dfrac{y}{5}\) và x-y=-4
e, 3x=4y và x.y=48
bài 1 : Tìm y
\(\dfrac{7}{8}xy-\dfrac{6}{4}=\dfrac{3}{2}\) \(\dfrac{2}{5}:y+\dfrac{1}{5}:y=\dfrac{10}{3}\)
bài 2 : Tính nhanh
\(\dfrac{2}{5}x\dfrac{4}{7}+\dfrac{2}{5}x\dfrac{3}{7}\) \(\dfrac{2}{9}:\dfrac{2}{3}:\dfrac{3}{9}\)
Bài 1:
+) \(\dfrac{7}{8}\times y=\dfrac{3}{2}+\dfrac{6}{4}=3\)
\(y=3:\dfrac{7}{8}=\dfrac{24}{7}\)
+) \(\dfrac{1}{y}\times\left(\dfrac{2}{5}+\dfrac{1}{5}\right)=\dfrac{10}{3}\)
\(\dfrac{1}{y}=\dfrac{10}{3}:\dfrac{3}{5}=\dfrac{50}{9}\)
\(y=\dfrac{9}{50}\)
Bài 2:
+) \(=\dfrac{2}{5}\times\left(\dfrac{4}{7}+\dfrac{3}{7}\right)\)
\(=\dfrac{2}{5}\times\dfrac{7}{7}=\dfrac{2}{5}\)
+) \(\dfrac{2}{9}:\dfrac{2}{3}:\dfrac{3}{9}\)
\(\dfrac{2}{9}\times\dfrac{3}{2}\times\dfrac{9}{3}=1\)
1. Tìm x và y
a) \(\dfrac{x}{y}\) = \(\dfrac{3}{7}\) và x - y = 16
b) \(\dfrac{x}{1,8}\) = \(\dfrac{y}{3,2}\) và y - x = 7
c) \(\dfrac{x}{5}\) = \(\dfrac{y}{8}\) và x + 2y = 42
d) \(\dfrac{x}{5}\) = \(\dfrac{y}{7}\) và x . y = 35
2. Tính số học sinh của lớp 7A và lớp 7B , biết rằng lớp 7A ít hơn lớp 7B là 5 học sinh và tỉ số học sinh của hai lớp là 8 : 9
\(\dfrac{x}{y}=\dfrac{3}{7}.\\ \Rightarrow x=\dfrac{3}{7}y.\\ x-y=16.\\\Rightarrow\dfrac{3}{7}y-y=16.\\ \Rightarrow y=-28.\\ \Rightarrow x=-12.\)
\(\dfrac{x}{1,8}=\dfrac{y}{3,2}.\\ \Rightarrow\dfrac{x}{y}=\dfrac{1,8}{3,2}=\dfrac{9}{16}.\\ \Rightarrow x=\dfrac{9}{16}y.\\ y-x=7.\\ \Rightarrow y-\dfrac{9}{16}y=7.\\ \Leftrightarrow y=16.\\ \Leftrightarrow x=9.\)
\(\dfrac{x}{5}=\dfrac{y}{8}.\\ \Rightarrow\dfrac{x}{y}=\dfrac{5}{8}.\\ \Rightarrow x=\dfrac{5}{8}y.\\ x+2y=42.\\ \Rightarrow\dfrac{5}{8}y+2y=42.\\ \Leftrightarrow y=16.\\ \Rightarrow x=10.\)
\(\dfrac{x}{5}=\dfrac{y}{7}.\\ \Rightarrow\dfrac{x}{y}=\dfrac{5}{7}.\\ \Rightarrow x=\dfrac{5}{7}y.\\ x.y=35.\\ \Rightarrow\dfrac{5}{7}y.y=35.\\ \Leftrightarrow y^2=49.\\ \Leftrightarrow u=\pm7.\\ \Rightarrow x=\pm5.\)
Bài 3: (Đề 2) Tìm y
a) \(2\dfrac{2}{5}:\) y x \(1\dfrac{3}{4}=\dfrac{7}{8}\) b)\(3\dfrac{2}{5}:y:1\dfrac{1}{4}=2\dfrac{3}{5}\) c) \(\dfrac{12}{5}-2\dfrac{2}{5}x\) y \(=1\dfrac{1}{4}\)
\(a,2\dfrac{2}{5}:y\times1\dfrac{3}{4}=\dfrac{7}{8}\\ \dfrac{12}{5}:y\times\dfrac{7}{4}=\dfrac{7}{8}\\ \dfrac{12}{5}:y=\dfrac{7}{8}:\dfrac{7}{4}\\ \dfrac{12}{5}:y=\dfrac{1}{2}\\ y=\dfrac{12}{5}:\dfrac{1}{2}=\dfrac{24}{5}\\ b,3\dfrac{2}{5}:y:1\dfrac{1}{4}=2\dfrac{3}{5}\\ \dfrac{17}{5}:y:\dfrac{5}{4}=\dfrac{13}{5}\\ y:\dfrac{5}{4}=\dfrac{17}{5}:\dfrac{13}{5}\\ y:\dfrac{5}{4}=\dfrac{17}{13}\\ y=\dfrac{17}{13}\times\dfrac{5}{4}=\dfrac{85}{52}\)
\(c,\dfrac{12}{5}-2\dfrac{2}{5}\times y=1\dfrac{1}{4}\\ \dfrac{12}{5}-\dfrac{12}{5}\times y=\dfrac{5}{4}\\ \dfrac{12}{5}\times y=\dfrac{12}{5}-\dfrac{5}{4}\\ \dfrac{12}{5}\times y=\dfrac{23}{20}\\ y=\dfrac{23}{20}:\dfrac{12}{5}\\ y=\dfrac{23}{48}\)
a, 2\(\dfrac{2}{5}\): y \(\times\)1\(\dfrac{3}{4}\) = \(\dfrac{7}{8}\)
\(\dfrac{12}{5}\) : y \(\times\dfrac{7}{4}\) = \(\dfrac{7}{8}\)
\(\dfrac{12}{5}\) : y = \(\dfrac{7}{8}\) : \(\dfrac{7}{4}\)
\(\dfrac{12}{5}\) : y = \(\dfrac{1}{2}\)
y = \(\dfrac{12}{5}\) : \(\dfrac{1}{2}\)
y = \(\dfrac{24}{5}\)
b, 3\(\dfrac{2}{5}\): y : 1\(\dfrac{1}{4}\) = 2\(\dfrac{3}{5}\)
\(\dfrac{17}{5}\): y: \(\dfrac{5}{4}\) = \(\dfrac{13}{5}\)
\(\dfrac{17}{5}\):y = \(\dfrac{13}{5}\times\dfrac{5}{4}\)
\(\dfrac{17}{5}\) : y = \(\dfrac{13}{4}\)
y = \(\dfrac{17}{5}\) : \(\dfrac{13}{4}\)
y = \(\dfrac{68}{65}\)
c, \(\dfrac{12}{5}\) - 2\(\dfrac{2}{5}\)\(\times y\) = 1\(\dfrac{1}{4}\)
\(\dfrac{12}{5}\) - \(\dfrac{12}{5}\)\(\times\)y = \(\dfrac{5}{4}\)
\(\dfrac{12}{5}\times y\) = \(\dfrac{12}{5}\) - \(\dfrac{5}{4}\)
\(\dfrac{12}{5}\) \(\times\) y = \(\dfrac{23}{20}\)
\(y\) = \(\dfrac{23}{20}\): \(\dfrac{12}{5}\)
y = \(\dfrac{23}{48}\)
Bài 2 Tìm y
a) \(\dfrac{1}{2}-2xy=\dfrac{9}{20}\) b)\(\dfrac{3}{5}:\dfrac{4}{3}:y=2+\dfrac{7}{10}\) c) y + y x\(\dfrac{3}{2}-y\) x \(\dfrac{1}{2}=\dfrac{1}{10}\)
1/2-2y=9/20
=>2y=1/2-9/20=1/20
=>y=1/20:2=1/40
b,3/5:4/3:y=2+7/10=9/20:y=27/10
=>y=9/20:27/10=1/6
c,y+y*3/2-y*1/2=1/10
=>y(1+3/2-1/2)=1/10
=>2y=1/10
=>y=1/10:2=1/20
Tìm x,y biết:
1) \(\dfrac{x}{5}=\dfrac{y}{7}\) và x+y = 48
2) \(\dfrac{x}{4}=\dfrac{y}{-7}\) và x-y=33
3) \(\dfrac{x}{y}=-\dfrac{2}{5}\) và x+y =12
4) \(\dfrac{x}{3}=\dfrac{y}{5}\) và 2x+4y=28
5) \(\dfrac{x}{y}=\dfrac{3}{16}\) và 3x-y=35
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{7}=\dfrac{x+y}{5+7}=\dfrac{48}{12}=4\)
\(\dfrac{x}{5}=4\Rightarrow x=20\\ \dfrac{y}{7}=4\Rightarrow y=28\)
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{4}=\dfrac{y}{-7}=\dfrac{x-y}{4+7}=\dfrac{33}{11}=3\)
\(\dfrac{x}{4}=3\Rightarrow x=12\\ \dfrac{y}{-7}=3\Rightarrow y=-21\)
bài 1:
2 : y x \(\dfrac{3}{5}\) = \(\dfrac{9}{10}\) \(\dfrac{5}{4}-\dfrac{2}{5}:\) y = 1 \(\dfrac{3}{4}x\) (\(\dfrac{7}{2}\) - y) =\(\dfrac{3}{2}\)
2: y \(\times\) \(\dfrac{3}{5}\) = \(\dfrac{9}{10}\)
2:y = \(\dfrac{9}{10}\) : \(\dfrac{3}{5}\)
2: y = \(\dfrac{3}{2}\)
y = 2 : \(\dfrac{3}{2}\)
y = \(\dfrac{4}{3}\)
\(\dfrac{5}{4}\) - \(\dfrac{2}{5}\) : y = 1
\(\dfrac{2}{5}\) : y = \(\dfrac{5}{4}\) - 1
\(\dfrac{2}{5}\): y = \(\dfrac{1}{4}\)
y = \(\dfrac{2}{5}\) : \(\dfrac{1}{4}\)
y = \(\dfrac{8}{5}\)
\(\dfrac{3}{4}\) \(\times\) ( \(\dfrac{7}{2}\) - y) = \(\dfrac{3}{2}\)
\(\dfrac{7}{2}\) - y = \(\dfrac{3}{2}\) : \(\dfrac{3}{4}\)
\(\dfrac{7}{2}\) - y = 2
y = \(\dfrac{7}{2}\) - 2
y = \(\dfrac{3}{2}\)
Bài 2 :
a) Tìm các số nguyên x,y biết rằng \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\)
b) Cho \(\dfrac{x}{3}=\dfrac{y}{4}\) và \(\dfrac{y}{5}=\dfrac{z}{6}\). Tính A = \(\dfrac{2x+3y+4z}{3x+4y+5z}\)
c) Tìm giá trị nhỏ nhất của biểu thức B, biết rằng
\(B=\left|7x-5y\right|+\left|2z-3x\right|+\left|xy+yz+zx-2000\right|\)
b, Ta có : \(\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{5}=\dfrac{z}{6}\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{24}\)
Đặt \(x=15k;y=20k;z=24k\)
Thay vào A ta được : \(A=\dfrac{30k+60k+96k}{45k+80k+120k}=\dfrac{186k}{245k}=\dfrac{186}{245}\)
a, \(\dfrac{x}{7}-\dfrac{1}{2}=\dfrac{y}{y+1}\Leftrightarrow\dfrac{2x-7}{14}=\dfrac{y}{y+1}\Rightarrow\left(2x-7\right)\left(y+1\right)=14y\)
\(\Leftrightarrow2xy+2x-7y-7=14y\Leftrightarrow2xy+2x-21y-7=0\)
\(\Leftrightarrow2x\left(y+1\right)-21\left(y+1\right)+14=0\Leftrightarrow\left(2x-21\right)\left(y+1\right)=-14\)
\(\Rightarrow2x-21;y+1\inƯ\left(-14\right)=\left\{\pm1;\pm2;\pm7;\pm14\right\}\)
2x - 21 | 1 | -1 | 2 | -2 | 7 | -7 | 14 | -14 |
y + 1 | -14 | 14 | -7 | 7 | -2 | 2 | -1 | 1 |
x | 11 | 10 | loại | loại | 14 | 7 | loại | loại |
y | -15 | 13 | loại | loại | -3 | 1 | loại | loại |