tìm chữ số a,b : 71a1b chia hết cho 45
. Tìm các chữ số a,b để:
a) 56a3b chia hết cho 18 ;
b) 71a1b chia hết cho 45;
c) 6a14b chia hết cho 2;3;5;9
d) 25a1b chia hết cho 15 nhưng không chia hết cho 2.
a) (b = 0; a = 4); (b = 2; a = 2);(b = 4; a = 0); (b = 4; a = 9).
b) (b = 0; a = 0); b= 0; a = 9); (b = 5; a = 4).
c) (b = 0; a= 7).
d) (b = 5; a = 2); (b = 5;a = 5); (b = 5;a = 8).
Tìm các chữ số a, b để:
a) A = 56 a 3 b ¯ chia hết cho 18;
b) B = 71 a 1 b ¯ chia hết cho 45;
c) C = 6 a 14 b ¯ chia hết cho 2; 3; 5; 9;
d) D = 25 a 1 b ¯ chia hết cho 15 nhưng không chia hết cho 2.
a) (b = 0; a = 4); (b = 2; a = 2);(b = 4; a = 0); (b = 4; a = 9).
b) (b = 0; a = 0); b= 0; a = 9); (b = 5; a = 4).
c) (b = 0; a= 7).
d) (b = 5; a = 2); (b = 5;a = 5); (b = 5;a = 8).
tìm các chữ số a,b để b=71a1b chia hết cho 45
ai nhanh tớ tick
(b = 0; a = 0); b= 0; a = 9); (b = 5; a = 4)
Vậy71415 chia hết cho 45
Tìm a và b
71a1b chia hết cho 45
Ta có: 45 = 5.9
=> 71a1b chia hết cho 5 và cũng chia hết cho 9.
Để 71a1b chia hết cho 5 thì b = 0 hoặc b = 5.
Để 71a1b chia hết cho 9 thì ( 7 + 1 + a + 1 + b ) chia hết cho 9.
=> ( 9 + a + b ) chia hết cho 9.
+, Với b = 0 => ( 9 + a + 0 ) chia hết cho 9.
=> a = 0 hoặc a = 9 ( vì 0 < a < 10 )
+, Với b = 5 => ( 9 + a + 5 ) chia hết cho 9
=> ( 14 + a ) chia hết cho 9
=> a = 4.
Vậy...
tìm các chữ số a,b để b=71a1b chia hết cho 45
ai nhanh tớ tick làm đầy đủ các bước nhé
B chia hết cho 45
=>B chia hết cho 5 và B chia hết cho 9
=>7+1+a+1+b chia hết cho 9 và (b=0 hoặc b=5)
=>a+b chia hết cho 9 và (b=0 hoặc b=5)
TH1: b=0
=>a=0 hoặc a=9
TH2: b=5
=>a=4
Tìm các chữ số a và b để
a, 42ab chia hết cho 9 và 5
b, 25a1b chia hết cho 3, cho 5 và không chia hết cho 2
c, 71a1b chia hết cho 45
d, 579abc chia hết cho 5, cho 7 và cho 9
CÁC BẠN CHO MÌNH LỜI GIẢI CHI TIẾT NHÉ BẠN NÀO LÀM NHANH MÌNH SẼ TICK. THANK YOU <3
a, Để 42ab chia hết cho 5 thì b = 0 hoặc b = 5.
TH1: b = 0 => 42ab = 42a0
Xét số 42a0 chia hết cho 9 khi ( 4 + 2 + a + 0 ) chia hết cho 9
hay ( 6 + a ) chia hết cho 9
=> a = 3.
TH2: b = 5 => 42ab = 42a5
Xét số 42a5 chia hết cho 9 khi ( 4 + 2 + a + 5 ) chia hết cho 9
hay ( 11 + a ) chia hết cho 9
=> a = 7.
Vậy a = 3 và b = 0 hoặc a = 7 và b = 5.
b, Vì 25a1b chia hết cho 5 nhưng không chia hết cho 2 => b = 5.
=> 25a1b = 25a15
Xét số 25a15 chia hết cho 3 khi ( 2 + 5 + a + 1 + 5 ) chia hết cho 3
hay ( 13 + a ) chia hết cho 3
=> a = 2 hoặc a = 5 hoặc a = 8.
Vậy b = 5 và a = 2 hoặc 5 hoặc 8.
c, Vì 45 = 9 x 5
=> 71a1b chia hết cho cả 9 và 5
=> b = 0 hoặc b = 5.
TH1: b = 0 => 71a1b = 71a10
Xét số 71a10 chia hết cho 9 khi ( 7 + 1 + a + 1 + 0 ) chia hết cho 9
hay ( 9 + a ) chia hết cho 9
=> a = 0 hoặc a = 9.
TH2: b = 5 => 71a1b = 71a15
Xét số 71a15 chia hết cho 9 khi ( 7 + 1 + a + 1 + 5 ) chia hết cho 9
hay ( 14 + a ) chia hết cho 9
=> a = 4.
Vậy b = 0 thì a = 0 hoặc 9 ; b = 5 thì a = 4.
d,579abc = 579000 + abc
Vì 579000 chia 7 dư 2 => abc chia 7 dư 5. => abc = 7k + 5 ( k \(\in\)N ) => 2 x abc - 3 = 14k + 7 chia hết cho 7 < 1 >
Vì 579000 chia 9 dư 3 => abc chia 9 dư 6. => abc = 9m + 6 ( m \(\in\)N ) => 2 x abc - 3 = 18m + 9 chia hết cho 9 < 2 >
Vì 579000 chia hết cho 5 => abc chia hết cho 5.
Từ < 1 > ; < 2 > => 2 x abc - 3 chia hết cho cả 9 và 7 mà ( 9,7 ) = 1 => 2 x abc - 3 chia hết cho 63
Để abc chia hết cho 5 => c = 0 hoặc 5 => 2 x abc - 3 có chữ số tận cùng là 7.
2 x abc có tận cùng là 7 và chia hết cho 63 => Thương của 2 x abc khi chia cho 63 chỉ có thể là 9; 19; 29; 39; 49; ...
Xét lần lượt thương là 9; 19; 29 ta tìm được abc = 285 hoặc 600 hoặc 915.
Vậy \(\left(a;b;c\right)\in\left\{\left(2;8;5\right);\left(6;0;0\right);\left(9;1;5\right)\right\}.\)
a) 42ab chia hết cho 9 và 5
Ta có: 42ab chia hết cho 5 nên 42ab có tận cùng là 0 hoặc 5, suy ra b có thể là 0 hoặc 5
Số chia hết cho 9 là số có tổng các chữ số chia hết cho 9
Để 42a0 chia hết cho 9 thì 4 + 2 + a + 0 chia hết cho 9 => a = 3 ( Vì 9 - 4 - 2 - 0 = 3)
Để 42a5 chia hết cho 9 thì 4 + 2 + a + 5 chia hết cho 9 => a = 7 ( Vì 18 - 4 - 2 - 5 = 7)
Vậy ta có hai số 4230 và 4275 chia hết cho 9 và 5
b) 25a1b chia hết cho 3, cho 5 và không chia hết cho 2
Số chia hết cho 5 và không chia hết cho 2 có tận cùng là 5 => b = 5 => số có dạng: 25a15
Số chia hết cho 3 là số có tổng các chữ số chia hết cho 3
Ta có 2 + 5 + 1 + 5 = 13 nên a có thể là các số: 2, 5, 8 ( lấy 15 - 13 =2; 18 - 13 = 5; 21 - 13 =8 )
c, d tương tự
a) Tìm các chữ số a;b để 1879ab chia hết cho 45
b) Tìm các chữ số a;b để 87a9b chia hết cho 22
A)1879ab=187920
B) 87a9b=87890
NẾU ĐÚNG CHO 1 K NHÉ!
MÌNH ĐÃ THỬ NHIỀU LẦN RỒI,CHỈ CÓ MỖI 2 CHỮ SỐ NÀY THÔI.
a) Để 1879ab chia hết cho 45
=> 1879ab phải chia hết cho 5 và 9
+ Để 1879ab chia hết cho 5
=> b =0 hoặc b=5
+Nếu b=0
=>1879ab = 1879a0 = 1+8+7+9+a+0 =25+a chia hết cho 9=> a=2
+Nếu b= 5
=>=1879ab = 1879a5= 1+8+7+9+5+a=30+a chia hết cho 9=> a= 6
Phần b) tương tự
Tìm các chữ số a, b để :
a. A = 3ab chia hết cho cả 2;5;3;9
b. B = a72b chia hết cho cả 2;5;3;9
c. C = 10a5b chia hết cho 45
d. D = 26a3b chia hết cho 5 và 18
Để tìm các chữ số a và b thỏa mãn các điều kiện đã cho, ta sẽ kiểm tra từng trường hợp.
a. Để A = 3ab chia hết cho cả 2, 5, 3, 9, ta xét điều kiện chia hết cho 2 và chia hết cho 5:
Điều kiện chia hết cho 2: a phải là số chẵn.Điều kiện chia hết cho 5: b phải là 5 hoặc 0.Vậy, các cặp số (a, b) thỏa mãn là (2, 5) và (2, 0).
b. Để B = a72b chia hết cho cả 2, 5, 3, 9, ta xét điều kiện chia hết cho 2 và chia hết cho 5:
Điều kiện chia hết cho 2: b phải là số chẵn.Điều kiện chia hết cho 5: a + b = 7 + 2 + b chia hết cho 5. Vậy b = 3 hoặc 8.Vậy, các cặp số (a, b) thỏa mãn là (3, 3) và (8, 8).
c. Để C = 10a5b chia hết cho 45, ta xét điều kiện chia hết cho 45:
Điều kiện chia hết cho 45: tổng các chữ số của C chia hết cho 9 và C chia hết cho 5. Tổng các chữ số của C là 1 + 0 + a + 5 + b = 6 + a + b chia hết cho 9. Vậy a + b = 3 hoặc 12.Với a = 3, ta có b = 0. Với a = 1, ta có b = 11.
Vậy, các cặp số (a, b) thỏa mãn là (3, 0) và (1, 11).
d. Để D = 26a3b chia hết cho 5 và 18, ta xét điều kiện chia hết cho 5 và chia hết cho 18:
Điều kiện chia hết cho 5: b = 5 hoặc 0.Điều kiện chia hết cho 18: tổng các chữ số của D chia hết cho 9 và D chia hết cho 2. Tổng các chữ số của D là 2 + 6 + a + 3 + b = 11 + a + b chia hết cho 9. Vậy a + b = 7 hoặc 16.Với a = 1, ta có b = 6. Với a = 6, ta có b = 10.
Vậy, các cặp số (a, b) thỏa mãn là (1, 6) và (6, 10).
Tóm lại, các cặp số (a, b) thỏa mãn các điều kiện đã cho là: (2, 5), (2, 0), (3, 3), (8, 8), (3, 0), (1, 11), (1, 6) và (6, 10).
a: A chia hết cho 2 và 5
=>b=0
A chia hết cho 9
=>3+a+0 chia hết cho 9
=>a=6
b: B chia hết cho 2 và 5
=>b=0
B chia hết cho 9
=>a+7+2+0 chia hết cho 9
=>a=0(loại) hoặc a=9(nhận)
c: C chia hết cho 45
=>C chia hết cho 5 và C chia hết cho 9
=>b=0 hoặc b=5
TH1: b=0
C chia hết cho 9
=>1+0+a+5+0 chia hết cho 9
=>a+6 chia hết cho 9
=>a=3
TH2: b=5
C chia hết cho 9
=>1+0+a+5+5 chia hết cho 9
=>a=7
d: D chia hết cho 5 và 18
=>D chia hết cho 2;5;9
=>b=0
D chia hết cho 9
=>2+6+a+3+0 chia hết cho 9
=>a=7
a) Ta có: A = 360.
➩ a = {6} b = {0}
b) Ta có : B = 9720
➩ a = {9} b = {0}
c) Ta có : C = 10350.
➩ a = {3} b = {0}
d) Ta có : D = 26730
➩ a = {7} b = {0}
ĐÚNG THÌ CHO MK 1 LIKE NHÉ!!!!!!!
Tìm các chữ số a; b biết số 562 a b ¯ chia hết cho 45
A. a = 5, b = 0 hoặc a = 0; 9, b = 5
B. a = 2, b = 0 hoặc a = 6, b = 5
C. a = 7, b = 2 hoặc a = 8, b = 5
D. a = 6, b = 0 hoặc a = 5, b = 5
Ta có 45=5×9. Do đó các số chia hết cho 45 thì chia hết cho cả 5 và 9.
Để số 562 a b ¯ chia hết cho 5 thì b=0 hoặc b=5.
- Nếu b=0 ta có số 562 a b ¯
Để số 562 a b ¯ chia hết cho 9 thì tổng các chữ số phải chia hết cho 9, hay
(5+6+2+a+0)⋮9
(13+a)⋮9
⇒a=5
- Nếu b=5 ta có số 562 a b ¯
Để số 562 a b ¯ chia hết cho 9 thì tổng các chữ số phải chia hết cho 9, hay
(5+6+2+a+5)⋮9
(18+a)⋮9
⇒a=0;9
Vậy để số 562 a b ¯ chia hết cho cả 5 và 9 thì a=5 và b=0 hoặc a=0;9 và b=5.
Đáp án A