Tìm giá trị của biến x để:
\(P=\dfrac{1}{x^2+2x+6}\) đạt GTLN
Tìm giá trị của biến x để :
\(P=\dfrac{1}{x^2+2x+6}\)đạt giá trị lớn nhất
Lời giải:
$x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\geq 5$ với mọi $x\in\mathbb{R}$
Do đó: $P=\frac{1}{x^2+2x+6}\leq \frac{1}{5}$
Vậy $P_{\max}=\frac{1}{5}$. Giá trị đạt tại $x=-1$
\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)
\(P_{max}\) khi \(x+1=0\Leftrightarrow x=-1\)
Tìm giá trị của biến x để:
\(P=\dfrac{1}{x^2+2x+6}\) đạt GTLN
\(P=\dfrac{1}{x^2+2x+1+5}=\dfrac{1}{\left(x+1\right)^2+5}\)
Để P lớn nhất thì \(\left(x+1\right)^2+5\) nhỏ nhất, mà \(\left(x+1\right)^2+5\ge5\) \(\forall x\)
\(\Rightarrow P_{max}=\dfrac{1}{5}\) khi \(\left(x+1\right)^2=0\Rightarrow x=-1\)
Tính giá trị của biến x để. a)P=1/x^2+2x+6 đạt giá trị lớnnhất
b)Q=X^2 +4x+6/3 đạt giá trị nhỏ nhất
\(a,P=\dfrac{1}{x^2+2x+1+5}=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{0+5}=\dfrac{1}{5}\\ \text{Dấu }"="\Leftrightarrow x=-1\\ b,Q=\dfrac{x^2+4x+4+2}{3}=\dfrac{\left(x+2\right)^2+2}{3}\ge\dfrac{0+2}{3}=\dfrac{2}{3}\\ \text{Dấu }"="\Leftrightarrow x=-2\)
a) Ta có: x2+2x+6
=x2+2x+1+5
=(x+1)2+5 ≤ 5 với mọi x
=>x2+x+6=5
=>\(\dfrac{1}{x^2+x+6}\)≤\(\dfrac{1}{5}\)
dấu bằng xảy ra ⇔x=-1
b)
x2+4x+6=x2+4x+4+2=(x+2)2+2 ≥ 2
⇒A=\(\dfrac{x^2+4x+6}{3}\)≥ \(\dfrac{2}{3}\)
Vậy giá trị nhỏ nhất của biểu thức là \(\dfrac{2}{3}\), dấu ''='' xảy ra khi và chỉ khi x = -2
Tìm giá trị của biến x để
a/  \(P=\frac{1}{x^2+2x+6}\)đạt giá trị lớn nhất
b/ \(Q=\frac{x^2+x+1}{x^2+2x+1}\)đạt giá trị nhỏ nhất
\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)
\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)
Tìm tất cả các giá trị của x để biểu thức B = \(\dfrac{2\sqrt{x}}{x+\sqrt{x}+1}\)\(\left(x\ge0\right)\) đạt GTLN
Lời giải:
$\frac{3}{2}B=\frac{3\sqrt{x}}{x+\sqrt{x}+1}$
$\Rightarrow 1-\frac{3}{2}B=1-\frac{3\sqrt{x}}{x+\sqrt{x}+1}=\frac{x-2\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{(\sqrt{x}-1)^2}{x+\sqrt{x}+1}\geq 0$ với mọi $x\geq 0$
$\Rightarrow \frac{3}{2}B\leq 1$
$\Rightarrow B\leq \frac{2}{3}$
Vậy $B_{\max}=\frac{2}{3}$ khi $\sqrt{x}-1=0\Leftrightarrow x=1$
Tìm giá trị của biến x để
a) P = \(\frac{1}{x^2+2x+6}\)đạt giá trị lớn nhất
b) Q = \(\frac{x^2+x+1}{x^2+2x+1}\)đạt giá trị nhỏ nhất
p/s : giải chi tiết giùm em với
a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)
\(\Rightarrow P\le\frac{1}{5}\)
Dấu "=" xảy ra khi x=-1
\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)
Đặt \(a=\frac{1}{x+1}\)
\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)
\(P=\frac{1}{x^2+2x+6}\)
để pmin thì \(x^2+2x+6max\)
\(\frac{1}{x^2+2x+6}=\frac{1}{\left(x+1\right)^2+5}\)lớn hơn hoặc bằng 1/5
=>Pmin=1/5 khi và chỉ khi x=-1
Cho 4x^2+9y^2=9. Tìm giá trị của biến x, y để A= x-2y+3 đạt GTNN, GTLN
\(\left\{{}\begin{matrix}4x^2+9y^2=9\\A=x-2y+3\end{matrix}\right.\)
Áp dụng bất đẳng thức Bunhiacopxki cho các cặp số \(\left(\dfrac{1}{2};2x\right);\left(-\dfrac{2}{3};3y\right)\)
\(x-2y=\dfrac{1}{2}.x+\left(-\dfrac{2}{3}\right).3y\)
\(\Rightarrow\left[\dfrac{1}{2}.2x+\left(-\dfrac{2}{3}\right).3y\right]^2\le\left(\dfrac{1}{4}+\dfrac{4}{9}\right)\left(4x^2+9y^2\right)=\dfrac{25}{36}.9\)
\(\Rightarrow x-2y\le\dfrac{5}{6}.3=\dfrac{5}{2}\)
\(\Rightarrow A=x-2y+3\le\dfrac{5}{2}+3\)
\(\Rightarrow A=x-2y+3\le\dfrac{11}{2}\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{\dfrac{1}{2}}{2x}=\dfrac{-\dfrac{2}{3}}{3y}\)
\(\Rightarrow\dfrac{2x}{\dfrac{1}{2}}=\dfrac{3y}{-\dfrac{2}{3}}\)
\(\Rightarrow\dfrac{4x^2}{\dfrac{1}{4}}=\dfrac{9y^2}{\dfrac{4}{9}}=\dfrac{4x^2+9y^2}{\dfrac{1}{4}+\dfrac{4}{9}}=\dfrac{9}{\dfrac{25}{36}}=\dfrac{9.36}{25}\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=\dfrac{9.36}{25}.\dfrac{1}{16}\\y^2=\dfrac{9.36}{25}.\dfrac{4}{36}=\dfrac{9.4}{25}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3.6}{5}.\dfrac{1}{4}=\dfrac{9}{10}\\y=\dfrac{3.2}{5}=\dfrac{6}{5}\end{matrix}\right.\)
Vậy \(GTLN\left(A\right)=\dfrac{11}{2}\left(tạix=\dfrac{9}{10};y=\dfrac{6}{5}\right)\)
tìm giá trị nhỏ nhất của B=/x+2,8/-3,5
với giá trị nào để A đạt GTLN
A=1/2-/2x-3/
\(B=\left|x+2,8\right|-3,5\)
\(\left|x+2,8\right|\ge0\)
\(\Rightarrow\left|x+2,8\right|-3,5\ge-3,5\)
\(\Rightarrow\)GTNN của B là -3,5
\(A=\frac{1}{2}-\left|2x-3\right|\)
\(\left|2x-3\right|\ge0\)
\(\Rightarrow\frac{1}{2}-\left|2x-3\right|\le\frac{1}{2}\)
\(\Rightarrow\)GTLN của A là \(\frac{1}{2}\)khi và chỉ khi \(2x-3=0\)
\(\Rightarrow2x=3\)
\(\Rightarrow x=\frac{3}{2}\)
Cho P=\(\dfrac{1}{x^2-2x}.\left(\dfrac{x^2+4}{x}-4\right)+1\)
a) Rút gọn P
b) Tính giá trị của P biết | 2+x | =1
c) Tìm x để P đạt giấ trị lớn nhất .Tìm giá trị lớn nhất đó
a) đk x khác 0;2
P = \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)
= \(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)
= \(\dfrac{x-2}{x^2}+1\)
= \(\dfrac{x^2+x-2}{x^2}\)
b) Để \(\left|2+x\right|=1\)
<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)
TH1: x = -1
Thay x = -1 vào P, ta có:
\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)
TH2: x = -3
Thay x = -3 vào P, ta có:
\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)
c) P = \(1+\dfrac{x-2}{x^2}\)
Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)
= \(\left(x-2\right)+\dfrac{4}{x-2}+4\)
Áp dụng bdt co-si, ta có:
\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)
<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)
<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)
<=> A \(\le\dfrac{9}{8}\)
Dấu "=" <=> x = 4