Cho `x,y,z>`0 thỏa mãn `x+y+z>=3/2` tìm GTNN của biểu thức `A=x^2+y^2+z^2+1/x+1/y+1/z`
Giúp mk vs mk đg cần gấp!!!
Cho `x,y,z>0` thỏa mãn `x+y+z<=3/2`. Tìm GTNN của biểu thức `A=x^2+y^2+z^2+1/x+1/y+1/z.`
(Sử dụng BĐT Cosi)
1.cho x > 0. tìm GTNN của A = \(\dfrac{3x^4+16}{x^3}\)
2. cho x,y,z > 0 thỏa mãn x+y+z=2. tìm GTNN của biểu thức:
P=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.
cho x,y,z>0 thỏa mãn \(\dfrac{1}{x}+\dfrac{2}{y}+\dfrac{3}{z}=6\) và biểu thức \(P=x+y^2+z^3\).
a/. CM: \(P\ge x+2y+3z-3\)
b/. tìm GTNN của P
\(P+3=x+\left(y^2+1\right)+\left(z^3+1+1\right)\ge x+2y+3z\)
\(\Rightarrow P\ge x+2y+3z-3\)
\(6=\dfrac{1}{x}+\dfrac{4}{2y}+\dfrac{9}{3z}\ge\dfrac{\left(1+2+3\right)^2}{x+2y+3z}\)
\(\Rightarrow x+2y+3z\ge6\Rightarrow P\ge3\)
Dấu "=" xảy ra khi \(x=y=z=1\)
Cho 3 số thực x,y,z thỏa mãn \(\dfrac{1}{x^{2}} + \dfrac{1}{y^{2}} + \dfrac{1}{z^{2}}\)= 3
Tìm GTNN của biểu thức P = \(\dfrac{y^{2}z^{2}}{x(y^{2}+z^{2})} + \dfrac{z^{2}x^{2}}{y(z^{2}+x^{2})} + \dfrac{x^{2}y^{2}}{z(x^2+y^2)}\)
Lời giải:
Bạn cần bổ sung điều kiện $x,y,z>0$
\(P=\frac{1}{x.\frac{y^2+z^2}{y^2z^2}}+\frac{1}{y.\frac{z^2+x^2}{z^2x^2}}+\frac{1}{z.\frac{x^2+y^2}{x^2y^2}}=\frac{1}{x(\frac{1}{y^2}+\frac{1}{z^2})}+\frac{1}{y(\frac{1}{z^2}+\frac{1}{x^2})}+\frac{1}{z(\frac{1}{x^2}+\frac{1}{y^2})}\)
\(=\frac{1}{x(3-\frac{1}{x^2})}+\frac{1}{y(3-\frac{1}{y^2})}+\frac{1}{z(3-\frac{1}{z^2})}=\frac{x}{3x^2-1}+\frac{y}{3y^2-1}+\frac{z}{3z^2-1}\)
Vì $\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\Rightarrow x^2, y^2, z^2>\frac{1}{3}$
Xét hiệu:
\(\frac{x}{3x^2-1}-\frac{1}{2x^2}=\frac{(x-1)^2(2x+1)}{2x^2(3x^2-1)}\geq 0\) với mọi $x>0$ và $x^2>\frac{1}{3}$
$\Rightarrow \frac{x}{3x^2-1}\geq \frac{1}{2x^2}$
Hoàn toàn tương tự với các phân thức còn lại và cộng theo vế ta có:
$P\geq \frac{1}{2}(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2})=\frac{3}{2}$
Vậy $P_{\min}=\frac{3}{2}$ khi $x=y=z=1$
1.cho x,y,z thuộc R thỏa mãn x+y+z+xy+xz+yz=6. Tìm GTNN của : x^2+y^2+z^2
2. cho x,y>0 thỏa mãn x+1/y<=1. tìm GTNN: A=x/y+y/x
cho x,y,z là các số thực thỏa mãn -1<=x,y,z <=1 và x+y+z =o. tìm GTNN biểu thức :P=căn bậc 2 1+x+y^2 +căn bậc 2 của 1+y+z^2 + căn bậc 2 của 1+z+x^2
Cho x,y,z > 1 thỏa mãn điều kiện x + y + z = xyz. Tìm GTNN của biểu thức \(A=\frac{y-2}{x^2}+\frac{z-2}{y^2}+\frac{x-2}{z^2}\)
Cay, đánh xong rồi tự nhiên bấm hủy :v
Ta có:\(x+y+z=xyz\Leftrightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=1\)
Đặt \(\left(\frac{1}{x};\frac{1}{y};\frac{1}{z}\right)\rightarrow\left(a;b;c\right)\Rightarrow ab+bc+ca=1\)
Khi đó:
\(A=\frac{a^2\left(1+2b\right)}{b}+\frac{b^2\left(1+2c\right)}{c}+\frac{c^2\left(1+2a\right)}{a}\)
\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+2\left(a^2+b^2+c^2\right)\)
\(\ge\frac{\left(a+b+c\right)^2}{a+b+c}+2\cdot\frac{\left(a+b+c\right)^2}{3}\)
\(=a+b+c+\frac{2\left(a+b+c\right)^2}{3}\)
\(\ge\sqrt{3\left(ab+bc+ca\right)}+\frac{6\left(ab+bc+ca\right)}{3}\)
\(=2+\sqrt{3}\)
Đẳng thức xảy ra tại \(x=y=z=\sqrt{3}\)
zZz Cool Kid_new zZz. Sai đề rồi bạn êii !
Nếu bạn đặt như vậy thì
\(A=\frac{y-2}{x^2}+\frac{z-2}{y^2}+\frac{x-2}{z^2}\)
\(=\frac{a^2\left(1-2b\right)}{b}+\frac{b^2\left(1-2c\right)}{c}+\frac{c^2\left(1-2a\right)}{a}\)
\(=\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}-2.\left(a^2+b^2+c^2\right)\)
thấy nó sương sương đề thanh hóa năm nay nên t dựa theo đề kia làm luôn :3
Với các số thực x>1, y>2, z>3 thỏa mãn x+y+z= 28 tìm GTNN của biểu thức P=
\(\sqrt{x-1}\) + \(2\sqrt{y-4}\) + \(3\sqrt{z-9}\)
Biểu thức này chỉ có GTLN, ko có GTNN
cho 3 số dương x,y,z thỏa mãn điều kiện x+y+z=2. Tìm GTNN của biểu thức\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
Áp dụng bất đẳng thức Bunhia dạng phân thức cho 3 số ta có:
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{x+z}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{x+y+z}{2}=\dfrac{2}{2}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\begin{matrix}\dfrac{x}{y+z}=\dfrac{y}{z+x}=\dfrac{z}{x+y}\\x,y,z>0;x+y+z=2\end{matrix}\)
\(\Leftrightarrow x=y=z=\dfrac{2}{3}\)
Áp dụng BĐT Svac-xơ cho 3 số dương có :
\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\ge\dfrac{\left(x+y+z\right)^2}{2.\left(x+y+z\right)}=1\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{2}{3}\)
Vậy Min biểu thức cho là 1 khi \(x=y=z=\dfrac{2}{3}\)