\(\left\{{}\begin{matrix}x^2-4xy+4z^2+12=0\\y^2-4yz+x^2-12=0\\16x^2-8xz+4y^2=0\end{matrix}\right.\)
giải hệ pt :
a,\(\left\{{}\begin{matrix}x^3+4y-y^3-16x=0\\y^2=5x^2+4\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\2x^2+y^2-2xy=1\end{matrix}\right.\)
c, \(\left\{{}\begin{matrix}x^3-y^3=9\\x^2+2y^2=x-4y\end{matrix}\right.\)
a.
\(\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)
Nhân vế:
\(-4\left(x^3-y^3\right)=\left(16x-4y\right)\left(5x^2-y^2\right)\)
\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)
\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4y}{7}\\y=-3x\end{matrix}\right.\)
Thế vào \(y^2=5x^2+4...\)
b. Đề bài không hợp lý ở \(4x^2\)
c.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=9\\3x^2+6y^2=3x-12y\end{matrix}\right.\)
Trừ vế:
\(x^3-y^3-3x^2-6y^2=9-3x+12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\)
\(\Leftrightarrow y=x-3\)
Thế vào \(x^2=2y^2=x-4y\) ...
b.
\(\Leftrightarrow\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\4x^2+2y^2-4xy=2\end{matrix}\right.\)
\(\Rightarrow y^4-2y^2-4xy^3+4xy=-1\)
\(\Leftrightarrow\left(y^2-1\right)^2-4xy\left(y^2-1\right)=0\)
\(\Leftrightarrow\left(y^2-1\right)\left(y^2-1-4xy\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=1\\y=-1\\x=\dfrac{y^2-1}{4y}\end{matrix}\right.\)
Thế vào \(2x^2+y^2-2xy=1\) ...
Với \(x=\dfrac{y^2-1}{4y}\) ta được:
\(2\left(\dfrac{y^2-1}{4y}\right)^2+y^2-2\left(\dfrac{y^2-1}{4y}\right)y=1\)
\(\Leftrightarrow5y^4-6y^2+1=0\)
giải hệ pt:
a, \(\left\{{}\begin{matrix}x^3+4y-y^3-16x=0\\y^2=5x^2+4\end{matrix}\right.\)
b, \(\left\{{}\begin{matrix}4x^2+y^4-4xy^3=1\\2x^2+y^2-2xy=1\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=16x-4y\\-4=5x^2-y^2\end{matrix}\right.\)
\(\Rightarrow-4\left(x^3-y^3\right)=\left(5x^2-y^2\right)\left(16x-4y\right)\)
\(\Leftrightarrow21x^3-5x^2y-4xy^2=0\)
\(\Leftrightarrow x\left(7x-4y\right)\left(3x+y\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\y=\dfrac{7x}{4}\\y=-3x\end{matrix}\right.\)
Lần lượt thế vào \(y^2=5x^2+4\)...
b. Đề bài bất hợp lý, \(4x^2+y^4\) cần là \(4x^4+y^4\)
1, \(\left\{{}\begin{matrix}x^3+2y^2-4y+29=0\\x^2+x^2y^2-18y=0\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^3+2y^2-4y+10=0\\x^2+x^2y^2-16y+12=0\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}x,y>0\\x+y=7\\\dfrac{9}{x}+\dfrac{16}{y}=7\end{matrix}\right.\)
4, \(\left\{{}\begin{matrix}x,y>0\\x+y=4\\\dfrac{4}{x}+\dfrac{9}{y}\le4\end{matrix}\right.\)
5, \(\left\{{}\begin{matrix}x^3+y^2=\dfrac{211}{27}\\x^2+y^2+xy-3x-4y+4=0\end{matrix}\right.\)
6, \(\left\{{}\begin{matrix}x^4+81y^2=697\\x^2+9y^2+3xy-9x-36y+36=0\end{matrix}\right.\)
Giải hệ phương trình:
a) \(\left\{{}\begin{matrix}4x^3+y^2-2y+5=0\\x^2+x^2y^2-4y+3=0\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{2x^2}{x^2+1}=y\\\dfrac{3y^3}{y^4+y^2+1}=z\\\dfrac{4z^4}{z^6+z^4+z^2+1}=x\end{matrix}\right.\)
Pt đầu chắc là sai đề (chắc chắn), bạn kiểm tra lại
Với pt sau:
Nhận thấy một ẩn bằng 0 thì 2 ẩn còn lại cũng bằng 0, do đó \(\left(x;y;z\right)=\left(0;0;0\right)\) là 1 nghiệm
Với \(x;y;z\ne0\)
Từ pt đầu ta suy ra \(y>0\) , từ đó suy ra \(z>0\) từ pt 2 và hiển nhiên \(x>0\) từ pt 3
Do đó:
\(\left\{{}\begin{matrix}y=\dfrac{2x^2}{x^2+1}\le\dfrac{2x^2}{2x}=x\\z=\dfrac{3y^3}{y^4+y^2+1}\le\dfrac{3y^3}{3\sqrt[3]{y^4.y^2.1}}=y\\x=\dfrac{4z^4}{z^6+z^4+z^2+1}\le\dfrac{4z^4}{4\sqrt[4]{z^6z^4z^2}}=z\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y\le x\\z\le y\\x\le z\end{matrix}\right.\) \(\Rightarrow x=y=z\)
Dấu "=" xảy ra khi và chỉ khi \(x=y=z=1\)
Vậy nghiệm của hệ là \(\left(x;y;z\right)=\left(0;0;0\right);\left(1;1;1\right)\)
giải hệ phương trình:
1, \(\left\{{}\begin{matrix}x^2+y^2-xy+4y+1=0\\y\left(7-x^2-y^2+2xy\right)=2\left(x^2+1\right)\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{matrix}\right.\)
1)ghpt \(\left\{{}\begin{matrix}x+y-2z-5t=2013\\z^2-10zt+25t^2=0\\x^2+5y^2+4z^2-4xy-4zy=0\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}x+y+z=3\\x^{-1}+y^{-1}+z^{-1}=\dfrac{1}{3}\\x^2+y^2+z^2=17\end{matrix}\right.\)
a)\(pt\left(2\right)\Leftrightarrow\left(5t-z\right)^2=0\Rightarrow z=5t\)
\(pt\left(3\right)\Leftrightarrow\left(x-2y\right)^2+\left(y-2z\right)^2=0\Rightarrow....\)
b)vĩ đại vậy chắc xài BĐT thôi, loanh quanh C-S và AM-GM 3 số
ai giúp t với
1:\(\left\{\begin{matrix}x\sqrt{12-y}+\sqrt{y\left(12-x^2\right)}=12\\x^3-8x-1=2\sqrt{y-2}\end{matrix}\right.\)
2:\(\left\{\begin{matrix}\left(1-y\right)\sqrt{x-y}+x=2+\left(x-y-1\right)\sqrt{y}\\2y^2-3x+6y+1=2\sqrt{x-2y}-\sqrt{4x-5y-3}\end{matrix}\right.\)
3:\(\left\{\begin{matrix}y\left(x^2+2x+2\right)=x\left(y^2+6\right)\\\left(y-1\right)\left(x^2+2x+7\right)=\left(x+1\right)\left(y^2+1\right)\end{matrix}\right.\)
4:\(\left\{\begin{matrix}x-2\sqrt{y+1}=3\\x^3-4x^2\sqrt{y+1}-9x-8y=-52-4xy\end{matrix}\right.\)
5:\(\left\{\begin{matrix}\frac{y-2x+\sqrt{y}-x}{\sqrt{xy}}+1=0\\\sqrt{1-xy}+x^2-y^2=0\end{matrix}\right.\)
Giải hệ
a) \(\left\{{}\begin{matrix}xy+y^2=1+y\\x^2+2y^2+2xy=4+x\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}x^2-2y^2-xy+2y-x=0\\x^2-y^2+6xy+12=0\end{matrix}\right.\)
a.
\(\Leftrightarrow\left\{{}\begin{matrix}2xy+2y^2=2+2y\\x^2+2y^2+2xy=4+x\end{matrix}\right.\)
\(\Rightarrow x^2+4xy+4y^2=x+2y+6\)
\(\Leftrightarrow\left(x+2y\right)^2-\left(x+2y\right)-6=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2y=3\\x+2y=-2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3-2y\\x=-2-2y\end{matrix}\right.\)
Thế vào pt đầu...
b.
Từ pt đầu:
\(\left(x^2-xy-2y^2\right)-\left(x-2y\right)=0\)
\(\Leftrightarrow\left(x+y\right)\left(x-2y\right)-\left(x-2y\right)=0\)
\(\Leftrightarrow\left(x+y-1\right)\left(x-2y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1-y\\x=2y\end{matrix}\right.\)
Thế xuống pt dưới...
Giaỉ hệ phương trình
1) \(\left\{{}\begin{matrix}x^2-2xy+x+y=0\\x^4-x^2\left(4y-3\right)+y^2=0\end{matrix}\right.\)
2)\(\left\{{}\begin{matrix}3x^2+2xy+y^2=11\\x^2+2xy+3y^2=17\end{matrix}\right.\)
3)\(\left\{{}\begin{matrix}x^3-2y^3-x-4y=0\\13x^2-41xy+21y^2+9=0\end{matrix}\right.\)