Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Công Chúa Đáng Yêu
Xem chi tiết
Tran Le Khanh Linh
26 tháng 4 2020 lúc 8:05

a) \(\frac{1}{x-1}+\frac{2x^2-5}{x^3-1}=\frac{4}{x^2+x+1}\left(x\ne1\right)\)

\(\Leftrightarrow\frac{1}{x-1}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4}{x^2+x+1}=0\)

\(\Leftrightarrow\frac{1\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2-5}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{4x-4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{x^2+x+1+2x^2-5-4x+4}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{3x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\frac{3x}{x^2+x+1}=0\)

=> 3x=0

<=> x=0 (tmđk)

Khách vãng lai đã xóa
Nguyễn Vy
Xem chi tiết
Nguyen T Linh
Xem chi tiết
Trương Thị Trang
Xem chi tiết
Trương Thị Trang
19 tháng 7 2017 lúc 17:23

các bạn giúp mình với. cảm ơn 

Trương Thị Trang
19 tháng 7 2017 lúc 19:53

giúp mình với

Bui Huyen
30 tháng 7 2019 lúc 20:08

a,\(\frac{13}{\left(x-3\right)\left(2x+7\right)}+\frac{1}{2x+7}=\frac{6}{x^2-9}\)\(\Leftrightarrow\frac{13\left(x+3\right)}{\left(x^2-9\right)\left(2x+7\right)}+\frac{x^2-9}{\left(x^2-9\right)\left(2x+7\right)}-\frac{6\left(2x+7\right)}{\left(x^2-9\right)\left(2x+7\right)}=0\)

\(\Leftrightarrow x+x^2-12=0\Leftrightarrow\orbr{\begin{cases}x=-4\\x=3\end{cases}}\)

b,\(\frac{x-3}{x-5}+\frac{1}{x}=\frac{x+5}{x\left(x-5\right)}\Leftrightarrow\frac{x\left(x-3\right)}{x\left(x-5\right)}+\frac{x-5}{x\left(x-5\right)}-\frac{x+5}{x\left(x-5\right)}=0\)

\(\Leftrightarrow x^2-3x-10=0\Rightarrow\orbr{\begin{cases}x=5\left(L\right)\\x=-2\end{cases}}\)

c,\(\frac{1}{x+2}+\frac{1}{x\left(x-2\right)}-\frac{8}{x\left(x^2-4\right)}=0\)\(\Leftrightarrow\frac{x\left(x-2\right)}{x\left(x^2-4\right)}+\frac{x+2}{x\left(x^2-4\right)}-\frac{8}{x\left(x^2-4\right)}=0\)

\(\Leftrightarrow x^2-x-6=0\Rightarrow\orbr{\begin{cases}x=3\\x=-2\left(L\right)\end{cases}}\)

d,\(\frac{2}{\left(x^2-4\right)}-\frac{1}{x\left(x-2\right)}-\frac{x+4}{x\left(x+2\right)}=0\)\(\Leftrightarrow\frac{2x}{x\left(x^2-4\right)}-\frac{x+2}{x\left(x^2-4\right)}-\frac{\left(x+4\right)\left(x-2\right)}{x\left(x^2-4\right)}=0\)

\(\Leftrightarrow-x^2-5x-10=0\)(vô nghiệm)

\(\)

Đăng Nhật Hoàng
Xem chi tiết
Nhung Trinh
Xem chi tiết
Despacito
10 tháng 2 2018 lúc 16:57

a) \(\left(3x^2+10x-8\right)^2=\left(5x^2-2x+10\right)^2\)

\(3x^2+10x-8=5x^2-2x+10\)

\(3x^2-5x^2+10x+2x-8-10=0\)

\(-2x^2+12x-18=0\)

\(x^2-6x+9=0\)

\(\left(x-3\right)^2=0\)

\(\Rightarrow x-3=0\)

\(\Rightarrow x=3\)

b) \(\frac{x^2-x-6}{x-3}=0\)

\(\Rightarrow x^2-x-6=0\)

\(\Rightarrow x^2-2x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}-6=0\)

\(\Rightarrow\left(x-\frac{1}{2}\right)^2-\frac{25}{4}=0\)

\(\Rightarrow\left(x-\frac{1}{2}-\frac{5}{2}\right)\left(x-\frac{1}{2}+\frac{5}{2}\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

Pain Thiên Đạo
10 tháng 2 2018 lúc 17:23

Gin hotaru  

Hòa Trần Hữu
Xem chi tiết
Nguyễn Thị Huệ
3 tháng 8 2015 lúc 10:03

13(x+3)+(x+3)(x-3)=6(2x+7)

13x+39+x^2-9-12x-42=0

x^2+x-12=0

x=3 và x=-4

**** cho mk nha!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

 

Hải Yến Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 6 2020 lúc 19:46

1) Ta có: x-4=2x+4

\(\Leftrightarrow x-4-2x-4=0\)

\(\Leftrightarrow-x-8=0\)

\(\Leftrightarrow-x=8\)

hay x=-8

Vậy: S={8}

2) Ta có: \(\frac{2x-1}{2}-\frac{x}{3}=x-\frac{x}{6}\)

\(\Leftrightarrow\frac{3\left(2x-1\right)}{6}-\frac{2x}{6}=\frac{6x}{6}-\frac{x}{6}\)

\(\Leftrightarrow3\left(2x-1\right)-2x-6x+x=0\)

\(\Leftrightarrow6x-3-2x-6x+x=0\)

\(\Leftrightarrow-x-3=0\)

\(\Leftrightarrow-x=3\)

hay x=-3

Vậy: S={-3}

3) ĐKXĐ: \(x\notin\left\{\frac{-1}{2};3\right\}\)

Ta có: \(\frac{x+3}{2x+1}-\frac{x}{x-3}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)

\(\Leftrightarrow\frac{\left(x+3\right)\left(x-3\right)}{\left(2x+1\right)\left(x-3\right)}-\frac{x\left(2x+1\right)}{\left(x-3\right)\left(2x+1\right)}=\frac{3x^2+x+9}{\left(2x+1\right)\left(x-3\right)}\)

Suy ra: \(x^2-9-\left(2x^2+x\right)-3x^2-x-9=0\)

\(\Leftrightarrow-2x^2-x-18-2x^2-x=0\)

\(\Leftrightarrow-4x^2-2x-18=0\)

\(\Leftrightarrow-4\left(x^2+\frac{1}{2}x+\frac{4}{5}\right)=0\)

\(\Leftrightarrow x^2+\frac{1}{2}x+\frac{4}{5}=0\)

\(\Leftrightarrow x^2+2\cdot x\cdot\frac{1}{4}+\frac{1}{16}+\frac{59}{80}=0\)

\(\Leftrightarrow\left(x+\frac{1}{4}\right)^2+\frac{59}{80}=0\)(vô lý)

Vậy: S=\(\varnothing\)

4) Ta có: \(\frac{2x}{3}+\frac{2x-1}{6}=4-\frac{x}{3}\)

\(\Leftrightarrow\frac{4x}{6}+\frac{2x-1}{6}=\frac{24}{6}-\frac{2x}{6}\)

\(\Leftrightarrow4x+2x-1=24-2x\)

\(\Leftrightarrow6x-1-24+2x=0\)

\(\Leftrightarrow8x-25=0\)

\(\Leftrightarrow8x=25\)

hay \(x=\frac{25}{8}\)

Vậy: \(S=\left\{\frac{25}{8}\right\}\)

ánh tuyết nguyễn
Xem chi tiết
Xích U Lan
8 tháng 2 2020 lúc 16:27

a, \(\frac{x-3}{5}\) = 6 - \(\frac{1-2x}{3}\)

3(x - 3) = 90 - 5(1 - 2x)

⇔ 3x - 9 = 90 - 5 + 10x

⇔ 3x - 10x = 90 - 5 + 9

⇔ -7x = 94

⇔ x = \(\frac{-94}{7}\)

S = { \(\frac{-94}{7}\) }

b, \(\frac{3x-2}{6}\) - 5 = \(\frac{3-2\left(x+7\right)}{4}\)

⇔ 2(3x - 2) - 60 = 9 - 6(x + 7)

⇔ 6x - 4 - 60 = 9 - 6x - 42

⇔ 6x + 6x = 9 - 42 + 60 + 4

⇔ 12x = 31

⇔ x = \(\frac{31}{12}\)

S = { \(\frac{31}{12}\) }

c, \(\frac{x+8}{6}\) - \(\frac{2x-5}{5}\) = \(\frac{x+1}{3}\) - x + 7

⇔ 5(x+ 8) - 6(2x - 5) = 10(x+1) - 30x+210

⇔ 5x+ 40 - 12x+ 30 = 10x+ 10 - 30x+210

⇔ 5x - 12x - 10x+ 30x = 10+ 210 - 30- 40

⇔ 13x = 150

⇔ x = \(\frac{150}{13}\)

S = { \(\frac{150}{13}\) }

d, \(\frac{7x}{8}\) - 5(x - 9) = \(\frac{2x+1,5}{6}\)

⇔ 21x - 120(x - 9) = 4(2x + 1,5)

⇔ 21x - 120x + 1080 = 8x + 6

⇔ 21x - 120x - 8x = 6 - 1080

⇔ -107x = -1074

⇔ x = \(\frac{1074}{107}\)

S = { \(\frac{1074}{107}\) }

e, \(\frac{5\left(x-1\right)+2}{6}\) - \(\frac{7x-1}{4}\) = \(\frac{2\left(2x+1\right)}{7}\) - 5

⇔ 140(x-1)+56 - 42(7x-1) = 48(2x+1)-840

⇔ 140x -140+56 -294x+42= 96x+48 -840

⇔ 140x -294x -96x = 48 -840 -42 -56+140

⇔ -250x = -750

⇔ x = 3

S = { 3 }

f, \(\frac{x+1}{3}\) + \(\frac{3\left(2x+1\right)}{4}\) = \(\frac{2x+3\left(x+1\right)}{6}\) + \(\frac{7+12x}{12}\)

⇔ 4(x+1)+9(2x+1) = 4x+6(x+1)+7+12x

⇔ 4x+4+18x+9 = 4x+6x+6+7+12x

⇔ 4x+18x - 4x - 6x - 12x = 6+7- 9 - 4

⇔ 0x = 0

S = R

Chúc bạn học tốt !

Khách vãng lai đã xóa