Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
dbrby
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
19 tháng 8 2018 lúc 18:52

Ta có : \(a^3+b^3=c\left(3ab-c^2\right)\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) ( Vì \(a+b+c=3\) )

\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow a=b=c\)

Mà : \(a+b+c=3\Rightarrow a=b=c=1\)

\(\Rightarrow A=675\left(1^{2018}+1^{2018}+1^{2018}\right)+1=675.3+1=2026\)

Nguyễn Thế Anh
Xem chi tiết
Kaneki Ken
17 tháng 12 2019 lúc 21:25

Cái này biến đổi dài vl ra í e :>>

Ta có a^3 + b^3 + c^3 -3abc=0 

=> (a+b)^3 +c^3 -3a^2b-3ab^2 -3abc=0

=> (a+b+c).[(a+b)^2 - (a+b).c +c^2] - 3ab.(a+b+c)=0

=> (a+b+c).(a^2+2ab+b^2 - ac - bc +c^2 - 3ab)=0

=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0

=> a+b+c=0 hoặc a^2+b^2+c^2-ab-bc-ca=0

Mà a,b,c dương nên a+b+c>0 => a^2+b^2+c^2-ab-bc-ca=0

=> 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ca=0

=> (a-b)^2 + (b-c)^2 + (c-a)^2=0

Đến đây easy r e nhé, có j ko hiểu hỏi lại vì nhiều chỗ hơi tắt

Khách vãng lai đã xóa
Nguyễn Thế Anh
17 tháng 12 2019 lúc 21:30

thank . Mấy chỗ đó hiểu dc

Khách vãng lai đã xóa
Nguyễn Phạm Hồng Anh
17 tháng 12 2019 lúc 21:30

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

Mà a,b,c là các số nguyên dương

\(\Rightarrow a+b+c\ne0\)

\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

Dấu "=" xảy ra khi

\(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}\Rightarrow}a=b=c}\)

\(\Rightarrow A=\frac{a^{2018}}{b^{2018}}+\frac{b^{2018}}{c^{2018}}+\frac{c^{2018}}{a^{2018}}=1+1+1=3\)

Khách vãng lai đã xóa
Cô Gái Mùa Đông
Xem chi tiết
Trương Quân Bảo
Xem chi tiết
Lê Trọng Chương
Xem chi tiết
Teendau
Xem chi tiết
Lê Minh Châu
Xem chi tiết

làm thế nào để tang điểm hỏi đáp

Khách vãng lai đã xóa
Phạm Tường Lan Vy
Xem chi tiết
You Are Mine
Xem chi tiết
Nhan Mạc Oa
5 tháng 11 2018 lúc 21:23

a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )

=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)

VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)

Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)

hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)

Nguyễn Lê Phước Thịnh
17 tháng 11 2022 lúc 20:15

b: Đặt a/b=c/d=k

=>a=bk; c=dk

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=k^2\)

\(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{\left(bk-dk\right)^2}{\left(b-d\right)^2}=k^2\)

Do đó: \(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\)

c: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3}{d^3}\)

\(\dfrac{a^3-b^3}{c^3-d^3}=\dfrac{b^3k^3-b^3}{d^3k^3-d^3}=\dfrac{b^3}{d^3}\)

Do đó: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{a^3-b^3}{c^3-d^3}\)

d: \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}=\dfrac{b^{2018}k^{2018}-b^{2018}}{b^{2018}k^{2018}+b^{2018}}=\dfrac{k^{2018}-1}{k^{2018}+1}\)

\(\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}=\dfrac{k^{2018}-1}{k^{2018}+1}\)

Do đó: \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}=\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}\)