Cho a^3+b^3=c(3ab-c^2) và a+b+c=3 tính gt của biểu thức
A=672.(a^2018+b^2018+c^2018)+2
cho a3+b3=c(3ab-c2) và a+b+c=3
tính A=675(a2018+b2018+c2018)+1
Ta có : \(a^3+b^3=c\left(3ab-c^2\right)\)
\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-bc-ca+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=0\) ( Vì \(a+b+c=3\) )
\(\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow a=b=c\)
Mà : \(a+b+c=3\Rightarrow a=b=c=1\)
\(\Rightarrow A=675\left(1^{2018}+1^{2018}+1^{2018}\right)+1=675.3+1=2026\)
cho a,b,c là các số nguyên dương thỏa mãn a^3+b^3+c^3=3abc
tính giá trị biểu thức A=(a^2018)/(b^2018)+(b^2018)/(c^2018)+(c^2018)/(a^2018)
Cái này biến đổi dài vl ra í e :>>
Ta có a^3 + b^3 + c^3 -3abc=0
=> (a+b)^3 +c^3 -3a^2b-3ab^2 -3abc=0
=> (a+b+c).[(a+b)^2 - (a+b).c +c^2] - 3ab.(a+b+c)=0
=> (a+b+c).(a^2+2ab+b^2 - ac - bc +c^2 - 3ab)=0
=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0
=> a+b+c=0 hoặc a^2+b^2+c^2-ab-bc-ca=0
Mà a,b,c dương nên a+b+c>0 => a^2+b^2+c^2-ab-bc-ca=0
=> 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ca=0
=> (a-b)^2 + (b-c)^2 + (c-a)^2=0
Đến đây easy r e nhé, có j ko hiểu hỏi lại vì nhiều chỗ hơi tắt
thank . Mấy chỗ đó hiểu dc
\(a^3+b^3+c^3=3abc\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
Mà a,b,c là các số nguyên dương
\(\Rightarrow a+b+c\ne0\)
\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)
\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)
Dấu "=" xảy ra khi
\(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}\Rightarrow}a=b=c}\)
\(\Rightarrow A=\frac{a^{2018}}{b^{2018}}+\frac{b^{2018}}{c^{2018}}+\frac{c^{2018}}{a^{2018}}=1+1+1=3\)
cho a+b+c=1; a2+b2+c2=1 và a3+b3+c3=1 .Tính giá trị biểu thức P=a2018+b2018+c2018
Cho a, b, c thỏa mãn (a + b + c)(ab + bc + ac) = 2018 và abc = 2018. Tính giá trị của biểu thức P = (b^2.c + 2018)(a^2.b + 2018)(c^2.a + 2018)
Cho a, b, c >0 và a+b/4 = b+c/3 = c+a/5
Tính giá trị của biểu thức: M = 5a - b- 7c + 2018
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)tính gt bt \(a^{2018}+b^{2018}+c^{2018}\)
Cho biết:(a/2)-b=c:(2/3) và a,b,c khác 0. Tính giá trị của biểu thức:Q=2018-(c/a-1/3)^3.(a/b-2)^3.(2/3+b/c)^3
làm thế nào để tang điểm hỏi đáp
1)cho 3 số x, y,z thỏa mãn điều kiện x+y+z=2018 và x^3+y^3+z^3=2018^3. Cmr (x+y+z)^3=x^2017+y^2017+z^2017
2)
tìm các cặp số nguyên (x y) biết x^2-4xy+5y^2-16=0
3)Cho 3 số a,b,c thỏa mãn a+b+c=0 và a^2+b^2+c^2=2018
4)tính giả trị biểu thức A=a^4+b^4+c^4
1. Cho \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) c/m
a) (2a+3c) . (2b-3d) = (2a- 3c) . (2b+3d)
b) \(\dfrac{\left(a^2+c\right)^2}{\left(b+d\right)^2}\) = \(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\)
c)\(\dfrac{a^3+b^3}{c^3+d^3}\) = \(\dfrac{a^3-b^3}{c^3-d^3}\)
d) \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}\) = \(\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}\)
HELP ME >~< !!!
a) \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
Từ \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\) = k ( k \(\in\) Q, k \(\ne\) 0 )
=> \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
VP = \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2.b.k+3.d.k}{2b+3d}\) = \(\dfrac{k.\left(2b+3d\right)}{2b+3d}\) = k (1)
VT = \(\dfrac{2a-3c}{2b-3d}\) = \(\dfrac{2.b.k-3.d.k}{2b-3d}\) = \(\dfrac{k.\left(2b-3d\right)}{2b-3d}\) = k (2)
Từ (1) và (2) ta có: \(\dfrac{2a+3c}{2b+3d}\) = \(\dfrac{2a-3c}{2b-3d}\)
hay: (2a+3c).(3b-3d) = (2a-3c).(2b+3d)
b: Đặt a/b=c/d=k
=>a=bk; c=dk
\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=k^2\)
\(\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}=\dfrac{\left(bk-dk\right)^2}{\left(b-d\right)^2}=k^2\)
Do đó: \(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(a-c\right)^2}{\left(b-d\right)^2}\)
c: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{b^3k^3+b^3}{d^3k^3+d^3}=\dfrac{b^3}{d^3}\)
\(\dfrac{a^3-b^3}{c^3-d^3}=\dfrac{b^3k^3-b^3}{d^3k^3-d^3}=\dfrac{b^3}{d^3}\)
Do đó: \(\dfrac{a^3+b^3}{c^3+d^3}=\dfrac{a^3-b^3}{c^3-d^3}\)
d: \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}=\dfrac{b^{2018}k^{2018}-b^{2018}}{b^{2018}k^{2018}+b^{2018}}=\dfrac{k^{2018}-1}{k^{2018}+1}\)
\(\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}=\dfrac{k^{2018}-1}{k^{2018}+1}\)
Do đó: \(\dfrac{a^{2018}-b^{2018}}{a^{2018}+b^{2018}}=\dfrac{c^{2018}-d^{2018}}{c^{2018}+d^{2018}}\)