Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
vu thanh tung
Xem chi tiết
Nguyễn Lê Thành Vinh Thi...
13 tháng 12 2017 lúc 9:44

ta thấy \(\sqrt{65}>\sqrt{64}\Leftrightarrow\sqrt{65}-1>\sqrt{64}-1\)

mà ta có \(\sqrt{64}-1=8-1=4+3=\sqrt{16}+\sqrt{9}\)

lại có \(\sqrt{16}>\sqrt{15};\sqrt{9}>\sqrt{8}\Leftrightarrow\sqrt{16}+\sqrt{9}>\sqrt{15}+\sqrt{8}\)

Vậy \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

Mera Do
Xem chi tiết
Nguyễn Đức Trí
3 tháng 8 2023 lúc 17:25

\(A=\sqrt[]{50}+\sqrt[]{65}\Rightarrow A^2=50+65+2\sqrt[]{50.65}=115+2\sqrt[]{5.10.5.13=}115+10\sqrt[]{130}\left(1\right)\)

\(B=\sqrt[]{15}+\sqrt[]{115}\Rightarrow B^2=15+115+2\sqrt[]{15.115}=15+115+2\sqrt[]{3.5.5.23}=15+115+10\sqrt[]{69}\left(2\right)\)Ta có  \(10\sqrt[]{130}< 10\sqrt[]{69.2}=10\sqrt[]{2}\sqrt[]{69}< 15+10\sqrt[]{69}\left(3\right)\)

\(\left(1\right),\left(2\right),\left(3\right)\Rightarrow A^2< B^2\Rightarrow A< B\)

\(\Rightarrow\sqrt[]{50}+\sqrt[]{65}< \sqrt[]{15}+\sqrt[]{115}\)

So sánh gì thế em, em nhập đủ đề vào hi

☆Nu◈Pa◈Kachi
Xem chi tiết
Thanh Tùng DZ
5 tháng 6 2019 lúc 15:10

a) \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\)

\(\Rightarrow\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

b) \(\frac{13-2\sqrt{3}}{6}>\frac{13-2\sqrt{4}}{6}=1,5\)

mà 1,52 = 2,25 ; \(\sqrt{2}^2=2\)

\(\Rightarrow1,5>\sqrt{2}\)hay \(\frac{13-2\sqrt{3}}{6}>\sqrt{2}\)

PORORO
Xem chi tiết
ST
27 tháng 6 2017 lúc 10:09

Ta có: \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\) (1)

\(\sqrt{65}-1>\sqrt{64}-1=8-1=7\) (2)

Từ (1) và (2) suy ra \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

Trần Thảo Nguyên
Xem chi tiết
Hotaru Takegawa
21 tháng 12 2015 lúc 19:38

\(\sqrt{7}+\sqrt{15}<\sqrt{9}+\sqrt{25}=3+5=8=\sqrt{64}=\sqrt{65-1}\)

Kakashi _kun
21 tháng 12 2015 lúc 19:39

\(\sqrt{65-1}=\sqrt{64}=8\)

\(\sqrt{7}<\sqrt{9};\sqrt{15}<\sqrt{16}\rightarrow\sqrt{7}+\sqrt{15}<\sqrt{9}+\sqrt{16}=3+4=7<8\)

Do đó phải điền dấu < 

Trang Nguyễn
Xem chi tiết
Akai Haruma
18 tháng 11 2021 lúc 18:19

Lời giải:

a.

$\sqrt{8}+\sqrt{15}+1<\sqrt{9}+\sqrt{16}+1=3+4+1=8=\sqrt{64}< \sqrt{65}$

$\Rightarrow \sqrt{8}+\sqrt{15}< \sqrt{65}-1$
b.

$(2\sqrt{3}+6\sqrt{2})^2=84+24\sqrt{6}< 84+24\sqrt{9}< 169$

$\Rightarrow 2\sqrt{3}+6\sqrt{2}< 13$

$\Rightarrow \frac{13-2\sqrt{3}}{6}> \sqrt{2}$

Nguyễn Anh Khoa
Xem chi tiết
Nguyễn Hoàng Tiến
15 tháng 6 2016 lúc 16:35

\(VT^2=23+4\sqrt{30}\)

\(VP^2=66-2\sqrt{65}\)

Ta phải so sánh:

\(4\sqrt{30}\) và \(43-2\sqrt{65}\)

\(480\) và \(2109-172\sqrt{65}\)

\(0\) và \(1629-172\sqrt{65}\)

\(0< 1629-172\sqrt{65}\)

Vậy \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

Real Madrid
15 tháng 6 2016 lúc 16:35

Ta có: \(\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}=3+4=7\)

    và  \(\sqrt{65}-1=\sqrt{64}-1=8-1=7\)

      Vậy \(\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

Trà My
15 tháng 6 2016 lúc 16:41

Ta có:

Vì \(\sqrt{8}< \sqrt{9}\)và \(\sqrt{15}< \sqrt{16}\)

\(\Rightarrow\sqrt{8}+\sqrt{15}< \sqrt{9}+\sqrt{16}\)

mà \(\sqrt{9}+\sqrt{16}=3+4=7\) 

\(\Rightarrow\sqrt{8}+\sqrt{15}< 7\)(1)


Vì \(\sqrt{65}>\sqrt{64}\)

\(\Rightarrow\sqrt{65}-1>\sqrt{64}-1\)

mà \(\sqrt{64}-1=8-1=7\) 

\(\Rightarrow\sqrt{64}-1>7\)(2)

Từ (1) và (2) =>\(\sqrt{8}+\sqrt{15}< 7< \sqrt{65}-1\)

\(\Rightarrow\sqrt{8}+\sqrt{15}< \sqrt{65}-1\)

Nguyễn Khoa Nguyên
Xem chi tiết
Nguyễn Văn Tuấn Anh
1 tháng 9 2019 lúc 22:56

a) 

Ta có:

\(\left(\sqrt{26}+\sqrt{5}\right)^2=26+2\sqrt{26}\sqrt{5}+5\)

\(=31+2\sqrt{130}\)(1)

Mặt khác: \(\left(\sqrt{7}\right)^2=7\) (2)

Từ (1) và (2) =>\(\sqrt{26}+\sqrt{5}>\sqrt{7}\)

ミ★kͥ-yͣeͫt★彡
13 tháng 9 2019 lúc 17:52

a) \(\sqrt{26}+\sqrt{5}< \sqrt{25}+\sqrt{4}=5+2=7\)

b) \(\sqrt{8}+\sqrt{24}< \sqrt{9}+\sqrt{25}=3+5=8\)

\(\sqrt{65}>\sqrt{64}=8\)

\(\Rightarrow\sqrt{8}+\sqrt{24}< \sqrt{65}\)

nguyen thuy linh
Xem chi tiết
Nguyễn Quang Hải
27 tháng 8 2020 lúc 16:43

1)  \(A^2=2+2.\frac{\sqrt{\left(8+\sqrt{15}\right)\left(8-\sqrt{15}\right)}}{2}\)

              \(2+\sqrt{64-15}=2+\sqrt{49}=2+7=9\) mà A>0

=> A=3

Khách vãng lai đã xóa
Nguyễn Quang Hải
28 tháng 8 2020 lúc 9:53

2) \(A=\sqrt{4-\sqrt{15}}\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right).\)

 \(A=\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

​​\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right).\)

\(A^2=\left(4+\sqrt{15}\right)\left(16-4\sqrt{15}\right)\)

       \(=4\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)=4\)

Mà A >0 

=> A=2

Mà 4>3

=> \(\sqrt{4}=2>\sqrt{3}\)

=> \(A>\sqrt{3}\)

Khách vãng lai đã xóa