cho x>0 tim Max \(A=\dfrac{1200x\left(12+x\right)}{\left(48+16x\right)^2}\)
cho x,y,z nguyen duong thoa man: \(\left\{{}\begin{matrix}\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\\\left|y-2x\right|\le\dfrac{1}{\sqrt{y}}\end{matrix}\right.\)
tim Max \(A=x^2+2y^2\)
Sau vài phút cố gắng thì khẳng định đề bài của em bị sai
cho x,y,z thuc duong thoa man \(\left\{{}\begin{matrix}\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\\\left|y-2x\right|\le\dfrac{1}{\sqrt{y}}\end{matrix}\right.\)
tim Max\(A=x^2+2y\)
Đề này còn có lý, lần sau chú ý đọc kĩ đề trước khi đăng lên, tránh làm mất thời gian vô ích:
\(\left|x-2y\right|\le\dfrac{1}{\sqrt{x}}\Rightarrow1\ge\sqrt{x}\left|x-2y\right|\Rightarrow1\ge x\left(x-2y\right)^2\)
\(\Rightarrow1\ge x^3-4x^2y+4xy^2\)
Tương tự: \(\dfrac{1}{\sqrt{y}}\ge\left|y-2x\right|\Rightarrow1\ge y^3-4xy^2+4xy^2\)
Cộng vế:
\(\Rightarrow2\ge x^3+y^3=\dfrac{1}{2}\left(x^3+x^3+1\right)+\left(y^3+1+1\right)-\dfrac{5}{2}\ge\dfrac{1}{2}.3x^2+3y-\dfrac{3}{2}=\dfrac{3}{2}\left(x^2+2y\right)-\dfrac{5}{2}\)
\(\Rightarrow\dfrac{3}{2}\left(x^2+2y\right)\le\dfrac{9}{2}\Rightarrow x^2+2y\le3\)
Tim Max :
E = \(\dfrac{4\left|x\right|+9}{\left|x\right|+1}\)
F = \(\dfrac{2\left|x\right|+8}{3\left|x\right|+1}\)
\(E=\dfrac{4\left|x\right|+9}{\left|x\right|+1}\)
\(\left\{{}\begin{matrix} \left|x\right|\ge0\Rightarrow4\left|x\right|\ge0\Rightarrow4\left|x\right|+9\ge9\\\left|x\right|\ge0\Rightarrow x+1\ge1\end{matrix}\right.\)
\(MAX_E\Rightarrow MIN_{\left|x\right|+1}\)
\(MIN_{\left|x\right|+1}=1\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
\(\Rightarrow MAX_E=\dfrac{4.\left|0\right|+9}{\left|0\right|+1}=\dfrac{9}{1}=9\)
\(F=\dfrac{2\left|x\right|+8}{3\left|x\right|+1}\)
\(\left\{{}\begin{matrix}\left|x\right|\ge0\Rightarrow2\left|x\right|\ge0\Rightarrow2\left|x\right|+8\ge8\\\left|x\right|\ge0\Rightarrow3\left|x\right|\ge0\Rightarrow3\left|x\right|+1\ge1\end{matrix}\right.\)
\(MAX_F\Rightarrow MIN_{3\left|x\right|+1}\)
\(MIN_{3\left|x\right|+1}=1\)
\(\Rightarrow\left|x\right|=0\Rightarrow x=0\)
\(\Rightarrow MAX_F=\dfrac{2.\left|0\right|+8}{3.\left|0\right|+1}=\dfrac{8}{1}=8\)
\(\)
Giải các pt sau:
a)\(x^2+\dfrac{4x^2}{\left(x+2\right)^2}=12\)
b) \(\dfrac{x^2}{3}+\dfrac{48}{x^2}=5\left(\dfrac{x}{3}+\dfrac{4}{x}\right)\)
c) \(\left(\dfrac{x}{x-1}\right)^2+\left(\dfrac{x}{x+1}\right)^2=\dfrac{10}{9}\)
d) \(\left(\dfrac{x-1}{x}\right)^2+\left(\dfrac{x-1}{x-2}\right)^2=\dfrac{40}{9}\)
e) \(x^2+\left(\dfrac{x}{x-1}\right)^2=8\)
g) \(x^3+\dfrac{1}{x^3}=6\left(x+\dfrac{1}{x}\right)\)
f) \(\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-12=0\)
Giải pt: { máy tính cho ra x=-1 , x=4 }
\(\left(x+1\right)\sqrt{16x+17}=8x^2-15x-23\) (1)
ĐK: \(16x+17\ge0\Leftrightarrow x\ge-\dfrac{17}{16}\)
(1) \(\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(N\right)\\\left\{{}\begin{matrix}16x+17=\left(x-\dfrac{23}{8}\right)^2\\x\ge\dfrac{23}{8}\end{matrix}\right.\end{matrix}\right.\)(2)
(2) \(\Leftrightarrow16x+17=x^2-\dfrac{23}{4}x+\dfrac{529}{64}\Leftrightarrow x^2-\dfrac{87}{4}-\dfrac{559}{64}=0\) (Xấu quéc!! Pt này không có nghiệm = 4---> sai ở đâu vậy ạ??)
Cảm ơn trước nak ^^!
(1) \(\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
cái này đâu ra z ???
nguyen van tuan: hì, xin lỗi, làm hơi tắt ^^!
\(\left(1\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}=\left(x+1\right)\left(x-\dfrac{23}{8}\right)\Leftrightarrow\left(x+1\right)\sqrt{16x+17}-\left(x+1\right)\left(x-\dfrac{23}{8}\right)=0\Leftrightarrow\left(x+1\right)\left(\sqrt{16x+17}-x+\dfrac{23}{8}\right)=0\)
tìm min, max \(C=\left(x-3\right)\left(7-x\right)\)với \(3\le x\le7\)
tìm min, max \(D=\left(2x-1\right)\left(3-x\right)\) với \(\dfrac{1}{2}\le x\le3\)
tìm min \(E=\dfrac{\left(x+2017\right)^2}{x}\) với x>0
tìm min \(F=\dfrac{\left(4+x\right)\left(2+x\right)}{x}\) với x>0
tim min \(G=x^2+\dfrac{2}{x^3}\)với x>0
tìm min, max \(H=\sqrt{1-2x}+\sqrt{x+8}\)
Ai làm được câu nào thì giúp mình nha!
Vì 3 ≤ x ≤ 7 => x - 3 ≥ 0; 7 - x ≥ 0
=> C ≥ 0
Dấu = xảy ra khi và chỉ khi x = 3 hoặc x = 7
C = (x - 3)(7 - x) ≤ \(\dfrac{1}{4}\)(x - 3 + 7 - x)2 = \(\dfrac{1}{4}\).42 = 4
Dấu "=" xảy ra <=> x - 3 = 7 - x <=> x = 5
\(G=\left(x^2+\sqrt[3]{3}\right)+\left(\dfrac{2}{x^3}+\dfrac{2}{\sqrt{3}}+\dfrac{2}{\sqrt{3}}\right)-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{x^2.\sqrt[3]{3}}+3\sqrt[3]{\dfrac{2}{x^3}.\dfrac{2}{\sqrt{3}}.\dfrac{2}{\sqrt{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt[6]{3}.x+\dfrac{6}{\sqrt[3]{3}x}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\ge2\sqrt{2\sqrt[6]{3}.x.\dfrac{6}{\sqrt[3]{3}x}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}=2\sqrt{\dfrac{12\sqrt[6]{3}}{\sqrt[3]{3}}}-\sqrt[3]{3}-\dfrac{4}{\sqrt{3}}\)
Dấu "=" xảy ra khi và chỉ khi \(x=\sqrt[6]{3}\)
Cô - si cho 5 số lên mạng search cách chứng minh nhé
\(G=\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{3}x^2+\dfrac{1}{x^3}+\dfrac{1}{x^3}\ge5\sqrt[5]{\dfrac{1}{3^3}.\dfrac{x^2.x^2.x^2}{x^3.x^3}}=5\sqrt[5]{\dfrac{1}{27}}\)
Dấu "=" xảy ra <=> \(\dfrac{1}{3}x^2=x^3\)
<=> \(x^5=3\)
<=> \(x=\sqrt[5]{3}\)
Bài 1: Giải phương trình:
a, \(\dfrac{3}{4}\sqrt{4x}-\sqrt{4x}+5=\dfrac{1}{4}\sqrt{4x}\)
b,\(\sqrt{3-x}-\sqrt{27-9x}+1,25\sqrt{48-16x}=6\)
Bài 2: Cho biểu thức:
P=\(\left(\dfrac{2}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{2}{1-a^2}+1\right)\) (với a\(\ge\)0; a\(\ne\)1)
a, Rút gọn P
b, Tính giá trị của P với a=\(\dfrac{24}{49}\)
c, Tìm a để P=2
Tôi cần gấp hai bài này vào chiều ngày 9 tháng 8 nên mong mọi người giúp đỡ ạ
a) ĐK: \(x\ge0\)
PT \(\Leftrightarrow\sqrt{4x}\left(\dfrac{3}{4}-1-\dfrac{1}{4}\right)+5=0\)
\(\Leftrightarrow2\sqrt{x}.\left(-\dfrac{1}{2}\right)+5=0\)
\(\Leftrightarrow x=25\) (thỏa)
Vậy \(x=25\)
b) Đk: \(x\le3\)
PT \(\Leftrightarrow\sqrt{3-x}-\sqrt{9\left(3-x\right)}+\dfrac{5}{4}\sqrt{16\left(3-x\right)}=6\)
\(\Leftrightarrow\sqrt{3-x}\left(1-\sqrt{9}+\dfrac{5}{4}.\sqrt{16}\right)=6\)
\(\Leftrightarrow\sqrt{3-x}=2\Leftrightarrow x=-1\) (thỏa)
Vậy \(x=-1\)
2:
a:
Sửa đề: \(P=\left(\dfrac{2}{\sqrt{1+a}}+\sqrt{1-a}\right):\left(\dfrac{2}{\sqrt{1-a^2}}+1\right)\)
\(P=\dfrac{2+\sqrt{\left(1-a\right)\left(1+a\right)}}{\sqrt{1+a}}:\dfrac{2+\sqrt{1-a^2}}{\sqrt{1-a^2}}\)
\(=\dfrac{2+\sqrt{1-a^2}}{\sqrt{1+a}}\cdot\dfrac{\sqrt{1-a^2}}{2+\sqrt{1-a^2}}=\sqrt{\dfrac{1-a^2}{1+a}}\)
\(=\sqrt{1-a}\)
b: Khi a=24/49 thì \(P=\sqrt{1-\dfrac{24}{49}}=\sqrt{\dfrac{25}{49}}=\dfrac{5}{7}\)
c: P=2
=>1-a=4
=>a=-3
1a (đkxđ:\(x\ge0\)) \(\Leftrightarrow\dfrac{-1}{2}.\sqrt{4x}+5=0\) \(\Leftrightarrow\sqrt{4x}=10\) \(\Leftrightarrow x=25\) (t/m)
b (đkxđ:\(x\le3\) ) \(\Leftrightarrow\sqrt{3-x}\left(1-3+1,25.4\right)=6\) \(\Leftrightarrow\sqrt{3-x}=2\) \(\Leftrightarrow x=-1\) (t/m)
tìm max \(A=\dfrac{x^4}{\left(x+1\right)^6}\left(x>0\right)\)
\(A=\left(\dfrac{x^2}{\left(x+1\right)^3}\right)^2=\left(\dfrac{x^2}{x^3+3x^2+3x+1}\right)^2=\left(\dfrac{1}{x+\dfrac{3}{x}+\dfrac{1}{x^2}+3}\right)^2\)
\(A=\left(\dfrac{1}{x+\dfrac{4}{x}+\left(\dfrac{1}{x}-\dfrac{1}{2}\right)^2+\dfrac{11}{4}}\right)^2\le\left(\dfrac{1}{x+\dfrac{4}{x}+\dfrac{11}{4}}\right)^2\)
\(A\le\left(\dfrac{1}{2\sqrt{\dfrac{4x}{x}}+\dfrac{11}{4}}\right)^2=\dfrac{16}{729}\)
Dấu "=" xảy ra khi \(x=2\)
Giải các phương trình sau:
a) \(x^2+\dfrac{4x^2}{\left(x+2\right)^2}=12\)
b) \(\dfrac{x^2}{3}+\dfrac{48}{x^2}=5\left(\dfrac{x}{3}+\dfrac{4}{x}\right)\)
c) \(\left(\dfrac{x}{x-1}\right)^2+\left(\dfrac{x}{x+1}\right)^2=\dfrac{10}{9}\)
d) \(\left(\dfrac{x-1}{x}\right)^2+\left(\dfrac{x-1}{x-2}\right)^2=\dfrac{40}{9}\)
e) \(x^2+\left(\dfrac{x}{x-1}\right)^2=8\)
f) \(\left(x^2+\dfrac{1}{x^2}\right)+5\left(x+\dfrac{1}{x}\right)-12=0\)
g) \(x^3+\dfrac{1}{x^3}=6\left(x+\dfrac{1}{x}\right)\)