Cho góc nhọn xOy và tia phân giác Oz của góc đó.Trên tia Õ lấy điểm A, trên tia Oy lấy điểm B sao cho OA=OB.Gọi C là 1 điểm trên tia Oz.Chứng minh:
a)AC=BC và \(\widehat{xAC}=\widehat{yBC}\)
b)\(AB\perp Oz\)
Cho góc nhọn xOy và tia phân giác Oz của góc đó .Trên tia Ox ,lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Gọi C là 1 điểm Trên tia Oz.Chứng minh:
a) AC=BC và \(\widehat{xAC}=\widehat{yB}C\)
b) AN=BC vuông góc với Oz
Bài giải
a) \(\Delta AOC=\Delta BOC\left(c-g-c\right)\)\(\Rightarrow AC=BC\)
và \(\widehat{OAC}=\widehat{OBC}\)mà\(\widehat{OAC}+\widehat{CAx}=180^o\),do đó \(\widehat{xAC}=\widehat{yBC}\)
b) Gọi giao điểm của AB với tia Oz là H,ta có :
\(\Delta OHA=\Delta OHB\left(c-g-c\right)\),do đó \(\widehat{AHO}=\widehat{OHB}\)mà
\(\Delta OHA=\Delta OHB=90^o\)
\(\Rightarrow\)\(AB\perp Oz\)
P/s Hình hơn xấu :)
Cho góc xOy nhọn và Oz là tia phân giác của góc đó .Trên Ox lấy điểm A ,trên tia Oy lấy điểm B sao cho OA = OB .Gọi C là một điểm bất kì trên tia Oz.Chứng minh rằng :
a) AC=BC ,góc xAC = góc yBC
b) AB vuông góc với Oz
Hình vẽ:
a) Ta có: Oz là tia phân giác của \(\widehat{xOy}\)nên \(\widehat{COA}=\widehat{COB}\)
Xét ΔOAC và ΔOBC có: \(\hept{\begin{cases}OA=OB\left(gt\right)\\\widehat{COA}=\widehat{COB}\left(cmt\right)\\OC.chung\end{cases}}\)=> ΔOAC = ΔOBC (c.g.c)
=> AC = BC (2 cạnh tương ứng)
và \(\widehat{OAC}=\widehat{OBC}\)(2 góc tương ứng)
Ta có: \(\hept{\begin{cases}\widehat{xAC}=\widehat{OAx}-\widehat{OAC}\\\widehat{yBC}=\widehat{OBy}-\widehat{OBC}\end{cases}}\)mà\(\hept{\begin{cases}\widehat{OAx}=\widehat{OBy}\left(=180^o\right)\\\widehat{OAC}=\widehat{OBC}\left(cmt\right)\end{cases}}\)
\(\Rightarrow\widehat{xAC}=\widehat{yBC}\)
b) Gọi H là giao điểm của AB và Ox
Xét ΔOAH và ΔOBH có: \(\hept{\begin{cases}OA=OB\left(gt\right)\\\widehat{COA}=\widehat{COB}\left(cmt\right)\\OH.chung\end{cases}}\)=> ΔOAH = ΔOBH (c.g.c)
=> \(\widehat{OHA}=\widehat{OHB}\)(2 góc tương ứng)
ta có: \(\widehat{AHB}=\widehat{OHA}+\widehat{OHB}=180^o\)mà \(\widehat{OHA}=\widehat{OHB}\)
=> \(\widehat{OHA}+\widehat{OHA}=180^o\Leftrightarrow2\cdot\widehat{OHA}=180^o\Leftrightarrow\widehat{OHA}=90^o\)
=> \(AB\perp Oz\)(đpcm)
Học tốt nha ^3^
Bt
Cho góc nhọn xOy và tia phân giác Oz của góc đó.Trên tia Ox lấy điểm A , trên tia Oy lấy điểm B sao cho OA=OB.Gọi C là 1 điểm trên tia Oz . Chứng minh:
a) AC=BC.
b) góc xAC=góc yBC
c) AB vuông góc Oz
Các bạn giúp mình nha mình cần gấp lắm!!
Xét tam giác AOC và tam giác BOC
CÓ + OA=OB(gt)
+ GÓC O: góc chung
+ OC cạnh chung
Vậy tam giác AOC=tam giac BOC(C.G.C)
=> AC=BC( hai góc tương ứng)
a: Xét ΔOAC và ΔOBC có
OA=OB
\(\widehat{AOC}=\widehat{BOC}\)'
OC chung
Do đó: ΔOAC=ΔOBC
=>AC=BC và \(\widehat{OAC}=\widehat{OBC}\)
\(\widehat{OAC}+\widehat{xAC}=180^0\)(hai góc kề bù)
\(\widehat{OBC}+\widehat{yBC}=180^0\)(hai góc kề bù)
mà \(\widehat{OAC}=\widehat{OBC}\)
nên \(\widehat{xAC}=\widehat{yBC}\)
b: OA=OB
=>O nằm trên đường trung trực của AB(1)
CA=CB
=>C nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra OC là đường trung trực của AB
=>OC\(\perp\)AB
=>Oz\(\perp\)AB
Bài 2: (Vẽ hình) Cho \(\widehat{xOy}\). Trên tia \(Ox\) lấy điểm \(A\), trên tia \(Oy\) lấy điểm \(B\) sao cho \(OA=OB\). Gọi \(C\) là 1 điểm trên tia phân giác \(Oz\) của \(\widehat{xOy}\). Chứng minh rằng:
a, \(AC=BC\)
\(\widehat{xAC}=\widehat{yBC}\)
b, \(OC=OB\)
`a,`
Xét $\Delta OAC$ và $\Delta ABC$ ta có `:`
`OA=OB(gt)`
\(\widehat{AOC}=\widehat{BOC}\) `( Oz` là tia phân giác \(\widehat{B}\) `)`
Chung `Oz`
`=>` $\Delta OAC$ `=` $\Delta ABC$ `(c.g.c)`
`=>` `{(\hat{OAC}=\hat{OBC} \text{( 2 góc tương ứng )} ),(AC=BC \text{ (2 cạnh tương ứng)}):}`
Từ `\hat{OAC}=\hat{OBC}`
`=>` `\hat{xAC}=\hat{yBC}` `(` kề bù với `2` góc bằng nhau `)`
`b,` Xem lại đề bài `: OC=OB?`
Cho góc nhọn xoy và tia phân giác oz của góc đố . Trên tia ox lấy điểm A, trên tia oy lấy điểm B sao cho OA=OB. Gọi C là 1 điểm trên tia oz . CM
a, AC=BC và góc xAc =yBc
b, AO vuông góc vs oz
Cho góc nhọn xOy và Oz là tia phân giác của góc đó. Trên tia Ox lấy điểm A và trên tia Oy lấy điểm B sao cho OA=OB. Gọi C là một điểm bất kì trên tia Oz
a) AC=BCvà góc xAc=góc yBC
a: Xét ΔOAC và ΔOBC có
OA=OB
góc AOC=góc BOC
OC chung
=>ΔOAC=ΔOBC
=>AC=BC và góc OAC=góc OBC
=>góc xAC=góc yBC
Cho góc xOy nhọn và tia phân giác Oz của góc đó. Trên Ox lấy điểm A trên tia Oy lấy điểm B sao cho OA=OB. Gọi C là một điểm trên tia Oz. Chứng minh:
a) AC= BC và góc xAC = góc yBC
b) AB vuông góc với Oz