Tìm các cặp (x,y) thoả mãn
\(\left|x+5\right|+\left|y-2\right|\le4\)
Tìm tất cả các cặp số \(\left(x,y\right)\) thoả mãn: \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}\le0\)
(2x-y+7)^2022>=0 với mọi x,y
|x-3|^2023>=0 với mọi x,y
Do đó: (2x-y+7)^2022+|x-3|^2023>=0 với mọi x,y
mà \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}< =0\)
nên \(\left(2x-y+7\right)^{2022}+\left|x-3\right|^{2023}=0\)
=>2x-y+7=0 và x-3=0
=>x=3 và y=2x+7=2*3+7=13
tìm các cặp số \(x,y\) thoả mãn điều kiện:
\(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\)
đang cần gấp! idol toán nào giải giúp em với!!!!
Bổ sung thêm \(x,y\in Z\) thì mới làm đc
\(x\left(x-2\right)-\left(2-x\right)y-2\left(x-2\right)=3\\ \Leftrightarrow\left(x-2\right)\left(x+y-2\right)=3=3\cdot1=\left(-3\right)\left(-1\right)\)
Ta thấy \(x+y-2>x-2;\forall x,y\in Z\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\x+y-2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y+1=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
ai giúp em với TvT, tối nay mà ko kó bài nộp là chớt em!
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
@Akai Haruma @Nguyễn Việt Lâm
Giúp em với ạ, em cảm ơn
Bài 1:
Cho $y=0$ thì: $f(x^3)=xf(x^2)$
Tương tự khi cho $x=0$
$\Rightarrow f(x^3-y^3)=xf(x^2)-yf(y^2)=f(x^3)-f(y^3)$
$\Rightarrow f(x-y)=f(x)-f(y)$ với mọi $x,y\in\mathbb{R}$
Cho $x=0$ thì $f(-y)=0-f(y)=-f(y)$
Cho $y\to -y$ thì: $f(x+y)=f(x)-f(-y)=f(x)--f(y)=f(x)+f(y)$ với mọi $x,y\in\mathbb{R}$
Đến đây ta có:
$f[(x+1)^3+(x-1)^3]=f(2x^3+6x)=f(2x^3)+f(6x)$
$=2f(x^3)+6f(x)=2xf(x^2)+6f(x)$
$f[(x+1)^3+(x-1)^3]=f[(x+1)^3-(1-x)^3]$
$=(x+1)f((x+1)^2)-(1-x)f((1-x)^2)$
$=(x+1)f(x^2+2x+1)+(x-1)f(x^2-2x+1)$
$=(x+1)[f(x^2)+2f(x)+f(1)]+(x-1)[f(x^2)-2f(x)+f(1)]$
$=2xf(x^2)+4f(x)+2xf(1)$
Do đó:
$2xf(x^2)+6f(x)=2xf(x^2)+4f(x)+2xf(1)$
$2f(x)=2xf(1)$
$f(x)=xf(1)=ax$ với $a=f(1)$
Cho f(x+y)=f(x)+f(y)
Tìm tất cả các hàm số f: R --> R thoả mãn : (Với mọi x,y thuộc R)
\(f\left(x^3-y^3\right)=xf\left(x^2\right)-yf\left(y^2\right)\)
\(f\left(x^5-y^5+xy\right)=x^3f\left(x^2\right)-y^3f\left(y\right)+f\left(xy\right)\)
Em cảm ơn ạ !!!
\(f\left(x^5+y^5+y\right)=x^3f\left(x^2\right)+y^3f\left(y^2\right)+f\left(y\right)\)
Sửa lại đề câu 2 !!
\(\left|x+5\right|+\left|y-2\right|\le4\\ 5\left|x+1\right|+\left|y-2\right|\le7\)
Tìm các cặp số nguyên ( x ; y ) thỏa mãn.
a)
\(\left\{{}\begin{matrix}\left|x+5\right|\le4\\x\in Z\end{matrix}\right.\) \(\Leftrightarrow-4\le x+5\le4\Rightarrow-9\le x\le-1\)
\(-4+\left|x+5\right|\le y-2\le4-\left|x+5\right|\)
\(-2+\left|x+5\right|\le y\le6-\left|x+5\right|\)
x={-1;-9}=> \(2\le y\le6-4\Rightarrow y=2\)
x={-2;-8}=> \(1\le y\le3\Rightarrow y=1;2;3\)
x={-3;-7} => \(0\le y\le4\Rightarrow y=0;1;2;3;4\)
x={-4;-6}=>\(-1\le y\le5\Rightarrow y=\left\{-1;0;1;2;3;4;5\right\}\)
x={-5}=> \(-2\le y\le6\Rightarrow y=\left\{-2;-1;0;1;2;3;4;5;6\right\}\)
(x;y)=(-1;2); (-2;y={1;2;3}) ....
b) tương tự
Tìm tất cả các hàm số f: Z --> Z thoả mãn \(f\left(f\left(x\right)+yf\left(x^2\right)\right)=x+x^2f\left(y\right)\) với mọi x,y thuộc Z
Thế \(\left(x;y\right)=\left(0;-1\right)\) vào ta được \(f\left(0\right)=0\)
Thế \(y=0\Rightarrow f\left(f\left(x\right)\right)=x\)
Do vế phải của biểu thức trên là hàm bậc nhất \(\Rightarrow\) có tập giá trị là \(Z\Rightarrow f\) là toàn ánh
Giả sử tồn tại \(x_1;x_2\) sao cho \(f\left(x_1\right)=f\left(x_2\right)=a\Rightarrow\left\{{}\begin{matrix}f\left(f\left(x_1\right)\right)=x_1\Rightarrow f\left(a\right)=x_1\\f\left(f\left(x_2\right)\right)=x_2\Rightarrow f\left(a\right)=x_2\end{matrix}\right.\)
\(\Rightarrow x_1=x_2\Rightarrow f\) là đơn ánh \(\Rightarrow f\) là song ánh
Thế \(\left(x;y\right)=\left(1;-1\right)\Rightarrow f\left(0\right)=1+f\left(-1\right)\Rightarrow f\left(-1\right)=-1\)
Thế \(\left(x;y\right)=\left(-1;f\left(1\right)\right)\Rightarrow f\left(f\left(-1\right)+f^2\left(1\right)\right)=-1+f\left(f\left(1\right)\right)\)
\(\Rightarrow f\left(f^2\left(1\right)-1\right)=-1+1=0\Rightarrow f^2\left(1\right)-1=0\) (do \(f\) song ánh)
\(\Rightarrow f^2\left(1\right)=1\Rightarrow f\left(1\right)=1\) (cũng vẫn do \(f\) song ánh nên \(f\left(1\right)\ne-1\) do \(f\left(-1\right)=-1\))
Thế \(\left(x;y\right)=\left(1;x\right)\Rightarrow f\left(1+x\right)=1+f\left(x\right)\) (1)
Từ đẳng thức trên, do \(x\in Z\) nên ta có thể quy nạp để tìm hàm \(f\):
- Với \(x=0\Rightarrow f\left(1\right)=1\)
- Với \(x=1\Rightarrow f\left(2\right)=f\left(1+1\right)=1+f\left(1\right)=2\)
- Giả sử \(f\left(k\right)=k\), ta cần chứng minh \(f\left(1+k\right)=1+k\), nhưng điều này hiển nhiên đúng theo (1)
Vậy \(f\left(x\right)=x\) là hàm cần tìm
Tìm các số nguyên x,y thoả mãn: \(\left(x+y\right)^2=\left(x-1\right).\left(y+1\right)\)
Tìm các cặp số tự nhiên ( x, y ) thoả mãn: y2+ \(\left|x-1\right|< 9\)
Cho x,y>1 thỏa mãn : \(x+y\le4\).Tìm min của biểu thức :
\(A=\dfrac{x^4}{\left(y-1\right)^2}+\dfrac{y^4}{\left(x-1\right)^4}\)
\(\left(x-1;y-1\right)=\left(a;b\right)\Rightarrow\left\{{}\begin{matrix}a;b>0\\a+b\le2\end{matrix}\right.\)
\(A=\dfrac{\left(a+1\right)^4}{b^2}+\dfrac{\left(b+1\right)^4}{a^2}\ge\dfrac{1}{2}\left[\dfrac{\left(a+1\right)^2}{b}+\dfrac{\left(b+1\right)^2}{a}\right]^2\)
\(A\ge\dfrac{1}{2}\left[\dfrac{\left(a+b+2\right)^2}{a+b}\right]^2\ge\dfrac{1}{2}\left[\dfrac{8\left(a+b\right)}{a+b}\right]^2=32\)