Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thu Hiền
Xem chi tiết
ntkhai0708
22 tháng 3 2021 lúc 23:17

$pt⇔(x-2)^3-(x+1)^3+9x^2-1=0$

$⇔(x-2-x-1)^3+3.(x-2)(x+1)(x-2-x-1)+9x^2-1=0$

$⇔-27-9x^2+9x+18+9x^2-1=0$

$⇔9x=10$

$⇔x=\dfrac{10}{9}$

vậy hệ phương trình cho có tập nghiệm $S=\dfrac{10}{9}$

Bùi Thanh Tâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2021 lúc 22:17

a) Ta có: \(2x^3+5x^2-3x=0\)

\(\Leftrightarrow x\left(2x^2+5x-3\right)=0\)

\(\Leftrightarrow x\left(2x^2+6x-x-3\right)=0\)

\(\Leftrightarrow x\left[2x\left(x+3\right)-\left(x+3\right)\right]=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

b) Ta có: \(2x^3+6x^2=x^2+3x\)

\(\Leftrightarrow2x^2\left(x+3\right)=x\left(x+3\right)\)

\(\Leftrightarrow2x^2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(2x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\2x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-3;\dfrac{1}{2}\right\}\)

c) Ta có: \(x^2+\left(x+2\right)\left(11x-7\right)=4\)

\(\Leftrightarrow x^2+11x^2-7x+22x-14-4=0\)

\(\Leftrightarrow12x^2+15x-18=0\)

\(\Leftrightarrow12x^2+24x-9x-18=0\)

\(\Leftrightarrow12x\left(x+2\right)-9\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(12x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\12x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\12x=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{4}\end{matrix}\right.\)

Vậy: \(S=\left\{-2;\dfrac{3}{4}\right\}\)

Kieu Diem
25 tháng 1 2021 lúc 22:10

Trong đó có nhiều phương trình kiến thức cơ bản mà nhỉ? Ít nâng cao, bạn lọc ra câu nào k làm đc thôi chứ!

Phạm Tiến Mạnh
Xem chi tiết
Ngô Hải Nam
14 tháng 4 2023 lúc 20:42

\(\dfrac{3}{1-x}-\dfrac{2}{x+2}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\left(x\ne1;x\ne-2\right)\)

\(< =>\dfrac{-3}{x-1}-\dfrac{2}{x+2}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\)

\(< =>\dfrac{-3\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\dfrac{2\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\)

suy ra

`-3(x+2)-2(x-1)=x+8`

`<=>-3x-6-2x+2=x+8`

`<=>-3x-2x-x=8+6-2`

`<=>-6x=12`

`<=>x=-2(ktmđk)`

Vậy phương trình vô nghiệm

Nguyễn Lê Phước Thịnh
14 tháng 4 2023 lúc 20:40

=>-3(x+2)-2x+2=x+8

=>-3x-6-2x+2=x+8

=>-5x-4=x+8

=>-6x=12

=>x=-2(loại)

Bùi Thanh Tâm
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2021 lúc 22:04

a) Ta có: \(\left(x-\sqrt{2}\right)+3\left(x^2-2\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)+3\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{2}\right)\left(1+3x+3\sqrt{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\sqrt{2}=0\\3x+3\sqrt{2}+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\3x=-3\sqrt{2}-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=\dfrac{-3\sqrt{2}-1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{\sqrt{2};\dfrac{-3\sqrt{2}-1}{3}\right\}\)

b) Ta có: \(x^2-5=\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)

\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}\right)-\left(2x-\sqrt{5}\right)\left(x+\sqrt{5}\right)=0\)

\(\Leftrightarrow\left(x+\sqrt{5}\right)\left(x-\sqrt{5}-2x+\sqrt{5}\right)=0\)

\(\Leftrightarrow-x\left(x+\sqrt{5}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=0\\x+\sqrt{5}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\sqrt{5}\end{matrix}\right.\)

Vậy: \(S=\left\{0;-\sqrt{5}\right\}\)

Lê Thu Hiền
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2021 lúc 21:37

Em coi lại đề bài, \(8\left(x+\dfrac{1}{x}\right)\) hay \(8\left(x+\dfrac{1}{x}\right)^2\) nhỉ?

 

Lê Thu Hiền
Xem chi tiết
Nguyễn Huy Tú
21 tháng 4 2021 lúc 15:28

Mấy ý này bản chất ko khác nhau nhé, mình làm mẫu, bạn làm tương tự mấy ý kia nhé 

a, \(\left|5x\right|=x+2\)

Với \(x\ge0\)thì \(5x=x+2\Leftrightarrow x=\dfrac{1}{2}\)

Với \(x< 0\)thì \(5x=-x-2\Leftrightarrow6x=-2\Leftrightarrow x=-\dfrac{1}{3}\)

b, \(\left|7x-3\right|-2x+6=0\Leftrightarrow\left|7x-3\right|=2x-6\)

Với \(x\ge\dfrac{3}{7}\)thì \(7x-3=2x-6\Leftrightarrow5x=-3\Leftrightarrow x=-\dfrac{3}{5}\)( ktm )

Với \(x< \dfrac{3}{7}\)thì \(7x-3=-2x+6\Leftrightarrow9x=9\Leftrightarrow x=1\)( ktm )

Vậy phương trình vô nghiệm 

Nguyễn Thị Huyền Diệp
Xem chi tiết
Thu Thủy vũ
Xem chi tiết
Pham Van Hung
7 tháng 3 2019 lúc 21:41

Đặt \(x+\frac{1}{x}=t\Rightarrow\left(x+\frac{1}{x}\right)^2=t^2\Leftrightarrow x^2+\frac{1}{x^2}=t^2-2\)

Khi đó phương trình đã cho 

\(\Leftrightarrow2t^2+\left(t^2-2\right)^2-t^2\left(t^2-2\right)=4-4x+x^2\)

\(\Leftrightarrow2t^2+t^4-4t^2+4-t^4+2t^2=x^2-4x+4\)

\(\Leftrightarrow4=x^2-4x+4\)

\(\Leftrightarrow x^2-4x=0\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}\)

Mà ĐKXĐ của phương trình là \(x\ne0\)

Tập nghiệm của pt là \(S=\left\{4\right\}\)

Phạm Tuấn Đạt
7 tháng 3 2019 lúc 21:51

Đặt \(x+\frac{1}{x}=a\)

\(\Rightarrow\left(x+\frac{1}{x}\right)^2=a^2\Leftrightarrow x^2+\frac{1}{x^2}+2=a^2\Leftrightarrow x^2+\frac{1}{x^2}=a^2-2\)

Có \(2a^2+\left(a^2-2\right)^2-a^2\left(a^2-2\right)=\left(2-x\right)^2\)

\(2a^2+a^4-4a^2+4-a^4+2a^2=\left(2-x\right)^2\)

\(\Leftrightarrow4=\left(2-x\right)^2\)

\(\Rightarrow\orbr{\begin{cases}2-x=4\\2-x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=-2\\x=6\end{cases}}\)

Vậy \(S=\left(-2;6\right)\)

Thu Thủy vũ
7 tháng 3 2019 lúc 21:56

Tại sao \(\left(x^2+\frac{1}{x^2}\right)=t^2-2\) thế

Nguyễn Lê Mẫn Nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 1 2021 lúc 21:10

a) Ta có: \(\left\{{}\begin{matrix}2\left(x+1\right)-3\left(y-2\right)=5\\-4\left(x-2\right)+5\left(y-3\right)=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x+2-3y+6=5\\-4x+8+5y-15=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-3\\-4x+5y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x-6y=-6\\-4x+5y=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-y=0\\2x-3y=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=0\\2x-3\cdot0=-3\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=0\end{matrix}\right.\)

Vậy: hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=-\dfrac{3}{2}\\y=0\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}8\left(x-3\right)-3\left(y+1\right)=-2\\3\left(x+2\right)-2\left(1-y\right)=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8x-24-3y-3=-2\\3x+6-2+2y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8x-3y=25\\3x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}24x-9y=75\\24x+16y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-25y=67\\3x+2y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-67}{25}\\3x=1-2y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=1-2\cdot\dfrac{-67}{25}=\dfrac{159}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}x=\dfrac{53}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)

Vậy: Hệ phương trình có nghiệm duy nhất là \(\left\{{}\begin{matrix}x=\dfrac{53}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)

𝓓𝓾𝔂 𝓐𝓷𝓱
24 tháng 1 2021 lúc 21:18

a) HPT \(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=-3\\-4x+5y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4x-6y=-6\\-4x+5y=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-y=0\\x=\dfrac{3y-3}{2}\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=0\\x=-\dfrac{3}{2}\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(-\dfrac{3}{2};0\right)\)

b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}8x-3y=25\\3x+2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}16x-6y=50\\9x+6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}25x=53\\y=\dfrac{1-3x}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{53}{25}\\y=-\dfrac{67}{25}\end{matrix}\right.\)

Vậy hệ phương trình có nghiệm \(\left(x;y\right)=\left(\dfrac{53}{25};-\dfrac{67}{25}\right)\)