(1/3-2x)^102+(3y-x)^104=0
tìm x, y
(1/3-2x)^102 (3y-x)^104 = 0 . Tìm x; y
Vì (1/3-2x)^102 và (3y-x)104 lớn hơn hoặc bằng 0 với mọi x và y
=>(1/3-2x)^102 và (3y-x)^104=0
Ta có: (1/3-2x)^102=0
=>1/3-2x=0
=>2x=1/3
=>x=1/6
Ta có:(3y-x)^104=0
=>3y-1/6=0
=>3y=1/6
=>y=1/18
Vậy x=1/6 và y=1/18
(1/3-2x)^102+(3y-x)^104 = 0 . Tìm x; y
(1/3-2x )^102+(3y-x)^104=0
Ta có:
\(\left(\frac{1}{3}-2x\right)^{102}+\left(3y-x\right)^{104}=0\left(1\right)\)
Nhận thấy:
\(\left(\frac{1}{3}-2x\right)^{102}\ge0;\left(3y-x\right)^{104}\ge0\forall x,y\)
Do đó (1) xảy ra khi và chỉ khi:
\(\hept{\begin{cases}\frac{1}{3}-2x=0\\3y-x=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{1}{6}\\y=\frac{1}{18}\end{cases}}\)
Tìm x,y thuộc n sao để x^3y-x^2y+4x^2+5xy-y^2=0
tìm số nguyên x,y sao cho x(x^2-y)+y+3)(x^2+1)=0
Giúp mình với??:(
Tìm x; y; z biết :
1) x/2 = y/3 ; y/4 = z/5 và x – y + z = 10
2) 4x = 3y ; 7y = 5z và 2x + 3y - z= 136
3) x-3/5 = y-5/1 = z+3/7 và 3x + 5y - 7z = 100
1) \(\Rightarrow\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x-y+z}{8-12+15}=\dfrac{10}{11}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{10}{11}\\\dfrac{y}{12}=\dfrac{10}{11}\\\dfrac{z}{15}=\dfrac{10}{11}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{80}{11}\\y=\dfrac{120}{11}\\z=\dfrac{150}{11}\end{matrix}\right.\)
2) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{4}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\) \(\Rightarrow\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{20}=\dfrac{z}{28}=\dfrac{2x}{30}=\dfrac{3y}{60}=\dfrac{2x+3y-z}{30+60-28}=\dfrac{136}{62}=\dfrac{68}{31}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{15}=\dfrac{68}{31}\\\dfrac{y}{20}=\dfrac{68}{31}\\\dfrac{z}{28}=\dfrac{68}{31}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1020}{31}\\y=\dfrac{1360}{31}\\z=\dfrac{1904}{31}\end{matrix}\right.\)
3) \(\Rightarrow\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}\)
Áp dụng t/c dtsbn:
\(\dfrac{3x-9}{15}=\dfrac{5y-25}{5}=\dfrac{7z+21}{49}=\dfrac{3x+5y-7z-9-25-21}{15+5-49}=-\dfrac{45}{29}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{3x-9}{15}=-\dfrac{45}{29}\\\dfrac{5y-25}{5}=-\dfrac{45}{29}\\\dfrac{7z+21}{49}=-\dfrac{45}{29}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{138}{29}\\y=\dfrac{100}{29}\\z=-\dfrac{402}{29}\end{matrix}\right.\)
Cho hàm số y=(m2-3m)x+2m-5 ( m là tham số) có đồ thị là d
Cho 2 đường thẳng (k3)y=2x-1
(k4) x-3y+2=0
Tìm m để d, k3,k4 đồng quy
Giúp mk vs
Gọi A là giao điểm \(k_3\) và \(k_4\Rightarrow\) tọa độ A là nghiệm:
\(\left\{{}\begin{matrix}y=2x-1\\x-3y+2=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=1\\x-3y=-2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\) \(\Rightarrow A\left(1;1\right)\)
3 đường thẳng đồng quy \(\Leftrightarrow d\) đi qua A
\(\Rightarrow\left(m^2-3m\right).1+2m-5=1\)
\(\Leftrightarrow m^2-m-6=0\Rightarrow\left[{}\begin{matrix}m=3\\m=-2\end{matrix}\right.\)
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\) và 2x+3y+z=102
\(\frac{x}{2}=\frac{y}{3}\\ \Rightarrow\frac{x}{10}=\frac{y}{15}\)
\(\frac{y}{5}=\frac{z}{7}\\ \Rightarrow\frac{y}{10}=\frac{z}{14}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{14}=\frac{2x}{20}=\frac{3y}{45}=\frac{z}{14}=\frac{2x+3y+z}{20+45+14}=\frac{102}{79}\)
\(\Rightarrow x=\frac{1020}{79};y=\frac{1530}{79};z=\frac{1428}{79}\)
suy ra: x/10 = y/15 ; y/15 = z/21 và 2x +3y +z =102
suy ra: x/10 = y/15 = z/21 và 2x +3y +z =102
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x/10=y/15=z/21 = 2x/20 = 3y/45 = z/21 = 2x+3y+z / 20 +45 +21 = 102/86 = 51/43
SAI ĐỀ RÙI
Tìm x biết: (x + 2)^2 - (x + 2)(x - 3) = 0
Tìm x biết :
a,(x+2)^2-(x+2)(x-3)=0
b,2x^3-4x^2+2x=0
c,(x-1)^2-(2x+1)^2=0
\(a,\Leftrightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Leftrightarrow5\left(x+2\right)=0\Leftrightarrow x=-2\\ b,\Leftrightarrow2x\left(x-1\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ c,\Leftrightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Leftrightarrow3x\left(-x-2\right)=0\Leftrightarrow-3x\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Rút gọn mỗi biểu thức sau:
a, (2x-1)\(^2\)-(x-3).(x+3)-1969
b, (2x-3y).(2x+3y)-(2x-y)\(^2\)
c, (x+3y)\(^2\)+(x-y).(x+y)+280
\(a,\left(2x-1\right)^2-\left(x-3\right)\left(x+3\right)-1969\\ =4x^2-4x+1-x^2+9-1969\\ =3x^2-4x-1959\)
\(b,\left(2x-3y\right)\left(2x+3y\right)-\left(2x-y\right)^2\\ =4x^2-9y^2-4x^2+4xy-y^2\\ =8y^2+4xy=4y\left(2y+x\right)\)
\(c,\left(x+3y\right)^2+\left(x+y\right)\left(x-y\right)+280\\ =x^2+6xy+9y^2+x^2-y^2+280\\ =2x^2+8y^2+6xy+280\)
a: \(\left(2x-1\right)^2-\left(x-3\right)\cdot\left(x+3\right)-1969\)
\(=4x^2-4x+1-x^2+9-1969\)
\(=3x^2-4x-1959\)
b: \(\left(2x-3y\right)\left(2x+3y\right)-\left(2x-y\right)^2\)
\(=4x^2-9y^2-4x^2+4xy-y^2\)
\(=-10y^2+4xy\)
a)\(\text{( 2 x − 1 )^2− ( x − 3 ) ( x + 3 ) − 1969}\)
\(\text{= 4x^2 − 4x + 1 − x^2 + 9 − 1969}\)
\(\text{=3x^2− 4 x − 1959}\)
b) \(\text{( 2 x − 3 y ) ( 2 x + 3 y ) − ( 2 x − y )^2}\)
=\(\text{= 4 x^2− 9 y^2− 4 x^2 + 4 x y − y^2}\)
\(\text{= -10 y^2+ 4 x y = -2 y ( 5 y -2 x )}\)
c)\(\text{( x + 3 y )^2 + ( x + y ) ( x − y ) + 280}\)
\(\text{= x^2 + 6 x y + 9 y^2 + x^2 − y^2 + 280}\)
\(\text{= 2 x^2 + 8 y^2 + 6 x y + 280}\)