tìm giá trị nhỏ nhất :
(x - 1)\(^2\) + (x - 2)\(^2\)
a) Tìm giá trị nhỏ nhất:
A = /x - 3/ +1
b) Tìm giá trị lớn nhất
B = -100 - /7 - x/
c) Tìm giá trị lớn nhất
C = -(x +1) ^2 - /2-y/ +11
d) Tìm giá trị nhỏ nhất
D = (x - 1)^2 + /2y + 2/ + 3
A = | x - 3 | + 1
Ta có : \(\left|x-3\right|\ge0\forall x\Rightarrow\left|x+3\right|+1\ge1\)
Dấu = xảy ra <=> | x + 3 | = 0
<=> x + 3 = 0
<=> x = -3
Vậy AMin = 1 khi x = -3
B = -100 - | 7 - x |
Ta có : \(\left|7-x\right|\ge0\forall x\Rightarrow-\left|7-x\right|\le0\)
=> \(-100-\left|7-x\right|\le-100\)
Dấu = xảy ra <=> - | 7 - x | = 0
<=> 7 - x = 0
<=> x = 7
Vậy BMax = -100 khi x = 7
C = -( x + 1 )2 - | 2 - y | + 11
Ta có : \(\hept{\begin{cases}\left(x+1\right)^2\ge0\forall x\\\left|2-y\right|\ge0\forall y\end{cases}\Rightarrow}\hept{\begin{cases}-\left(x+1\right)^2\le0\\-\left|2-y\right|\le0\end{cases}}\)
=> \(-\left(x+1\right)^2-\left|2-y\right|\le11\forall x,y\)
Dấu = xảy ra <=> -( x + 1 )2 = 0 và | 2 - y | = 0
<=> x + 1 = 0 và 2 - y = 0
<=> x = -1 và y = 2
Vậy CMax = 11 khi x = -1 ; y = 2
D = ( x - 1 )2 + | 2y + 2 | + 3
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\\left|2y+2\right|\ge0\forall y\end{cases}\Rightarrow\left(x-1\right)^2+\left|2y+2\right|+3\ge}3\)
Dấu = xảy ra <=> ( x - 1 )2 = 0 và | 2y + 2 | = 0
<=> x - 1 = 0 và 2y + 2 = 0
<=> x = 1 và y = -1
Vậy DMin = 3 khi x = 1 và y = -1
a) A=/x-3/+1>=0+1=1
dấu "="sảy ra <=>x-3=0<=>x=3
vậy min A=1 <=>x=3
b) B=-100-/7-x/=<-100-0=-100
dấu "="sảy ra <=>7-x=0<=>x=7
vậy max B=-100<=>x=7
c)C=-(x+1)^2-/2-y/+11=<-0-0+11=11
dấu "="sảy ra <=>x=-1vày=2
vậy max C=11<=>x=-1 và y=-2
d)D=(x-1)^2+/2y+2/+3>=0+0+3=3
dấu "="sảy ra <=>x=1 và y =-1
vậy min D=3<=>x=1 và y=-1
tìm giá trị nhỏ nhất của M=x2+2x+2
tìm giá trị nhỏ nhất của M=x2-x-1
tìm giá trị nhỏ nhất của M=2x2-2x+3
\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)
\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)
\(M=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
=>\(\left(x+1\right)^2+1\ge1\) với mọi x
=>GTNN của M là 1
Dấu "=" xảy ra <=> x+1=0<=>x=-1
1) a) tìm giá trị nhỏ nhất: x^2-x+1
b) tìm giá trị lớn nhất :-x^2+x-y^2-4y-6
1)a)x^2-x+1=x2-2.x.1/2+1/4 +3/4
=(x-1/2)2+3/4\(\ge\)3/4(vì (x-1/2)2\(\ge\)0)
dấu = xảy ra khi:
x-1/2=0
x=1/2
vậy GTNN của x^2-x+1 là 3/4 tại x=1/2
b)-x^2+x-y^2-4y-6
=(-x2+2x.1/2-1/4)+(-y2-4y-4)-7/4
=-(x2-2x.1/2+1/4)-(y2+4y+4)-7/4
=-(x-1/2)2-(y+2)2-7/4\(\le\)-7/4( vì -(x-1/2)2\(\le\)0;-(y+2)2\(\le\)0)
dấu = xảy ra khi:
x-1/2=0 và y+2=0
x=1/2 và y=-2
vậy GTLN của -x^2+x-y^2-4y-6 là -7/4 tại x=1/2 và y=-2
Tìm các giá trị của X để biểu thức P=(x-1)(x+2)(x+3)(x+6)có giá trị nhỏ nhất-tìm giá trị nhỏ nhất đó
nhân cái đầu với cái cuối, hai cái giữa nhân vào nhau rồi đặt ẩn là ra
Tìm giá trị nhỏ nhất: P= ( | x-1|+2)2 + |y-z|+2020
Tìm giá trị lớn nhất: A= |x-2019|-|x-2020|
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
Tìm giá trị của x để biểu thức:
P=(x-1)(x+2)(x+3)(x+6) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó
B=|x-1|+|x-2|+|x-3|+|x-5|. Tìm x để B có giá trị nhỏ nhất, tìm giá trị nhỏ nhất đó
B = (1-1) +(2 -2)+(3-3)+(5-5)
B =0+0+0+0
B =0
tìm giá trị nhỏ nhất của \(A=x^2-2x+5\)
tìm giá trị nhỏ nhất của \(B=2x^2-6x\)
tìm giá trị lớn nhất của \( C=4x-x^2+3\)
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
1 Tìm giá trị lớn nhất: A=6x-x^2+1
2 Tìm giá trị nhỏ nhất: B=2x^2-x^3+3
1) \(A=-\left(x^2-6x-1\right)=-\left(x^2-2.3x+9-10\right)\)
\(=-\left(x-3\right)^2+10\)
\(=10-\left(x-3\right)^2\le10\) ( vì \(\left(x-3\right)^2\ge0\) với mọi x)
Dấu "=" xảy ra \(\Leftrightarrow x=3\)
Vậy Max A = 10 tại x=3.