Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
chi nguyễn khánh
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
LEGGO
Xem chi tiết
Vũ Tiền Châu
23 tháng 7 2018 lúc 20:54

liên hợ thôi !

Incursion_03
Xem chi tiết
trần thị hương trinh
Xem chi tiết
s2 Lắc Lư  s2
15 tháng 5 2017 lúc 20:59

đề sai r,,,,,,cái kia phải là x^2-x+1 chứ

nếu đúng như tôi thì bạn chỉ cần cho cái 2 vào trong căn rồi nhân liên hợp là ok

trần thị hương trinh
27 tháng 5 2017 lúc 21:32

yes..thanks

Upin & Ipin
Xem chi tiết
Nguyễn Linh Chi
9 tháng 8 2019 lúc 10:01

ĐK: x>= -1/3

Ta có: \(pt\Leftrightarrow2x\sqrt{x^2-x+1}+4\sqrt{3x+1}=2x^2+2x+6\)

<=> \(x^2-2x\sqrt{x^2-x+1}+\left(x^2-x+1\right)+\left(3x+1\right)-2.\sqrt{3x+1}.2+4=0\)

\(\Leftrightarrow\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2=0\)

Mà : \(\left(x-\sqrt{x^2-x+1}\right)^2\ge0;\left(\sqrt{3x+1}-2\right)^2\ge0\)

Khi đó: \(\left(x-\sqrt{x^2-x+1}\right)^2+\left(\sqrt{3x+1}-2\right)^2\ge0\)

Dấu "=" xảy ra khi và chỉ khi: 

\(\hept{\begin{cases}\left(x-\sqrt{x^2-x+1}\right)^2=0\\\left(\sqrt{3x+1}-2\right)^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x^2=x^2-x+1,x\ge0\\3x+1=4\end{cases}}\Leftrightarrow x=1\)tm đk

Vậy x=1

tth_new
12 tháng 8 2019 lúc 18:48

Ta có thể dùng cô si chăng?

ĐK: \(x\ge-\frac{1}{3}\)

\(VT=\sqrt{x^2\left(x^2-x+1\right)}+\sqrt{4\left(3x+1\right)}\)

\(\le\frac{x^2+x^2-x+1}{2}+\frac{4+3x+1}{2}=\frac{2x^2+2x+6}{2}=x^2+x+3=VP\)

Để đẳng thức xảy ra, tức là xảy ra đẳng thức ở phương trình thì:

\(\hept{\begin{cases}x^2=x^2-x+1\\4=3x+1\end{cases}}\Leftrightarrow x=1\)

Vậy...

Is it true??

Phùng Minh Quân
12 tháng 8 2019 lúc 19:01

tth_new nếu thế thì em phải xét 2 TH \(x\ge0\) ( là trường hợp em làm ) và \(\frac{1}{3}\le x< 0\)

TH: \(\frac{1}{3}\le x< 0\)

\(VT< 0+2=2\)

\(VP=\left(x+\frac{1}{2}\right)^2+\frac{11}{4}>\frac{1}{36}+\frac{11}{4}=\frac{25}{9}>\frac{18}{9}=2>VT\) => loại TH này 

Mạc Bảo Phúc
Xem chi tiết
le thi khanh huyen
Xem chi tiết
alibaba nguyễn
11 tháng 1 2019 lúc 14:10

b/ Đặt \(\sqrt{x^2+1}=a\ge0\)

\(\Rightarrow a^2+3x=\left(x+3\right)a\)

\(\Leftrightarrow\left(3-a\right)\left(x-a\right)=0\)

alibaba nguyễn
11 tháng 1 2019 lúc 14:17

a/ Dựa vô TXĐ thì thấy \(x< 2\)

\(\Rightarrow\sqrt{x^2+6}+2\sqrt{x^2-1}-x>\sqrt{6}-2>0\)

Vậy vô nghiệm

Hoàng hôn  ( Cool Team )
24 tháng 9 2019 lúc 21:18

alibaba nguyễn

b/ Đặt \sqrt{x^2+1}=a\ge0x2+1​=a≥0

\Rightarrow a^2+3x=\left(x+3\right)a⇒a2+3x=(x+3)a

\Leftrightarrow\left(3-a\right)\left(x-a\right)=0⇔(3−a)(xa)=0

a/ Dựa vô TXĐ thì thấy x&lt; 2x<2

\Rightarrow\sqrt{x^2+6}+2\sqrt{x^2-1}-x&gt;\sqrt{6}-2&gt;0⇒x2+6​+2x2−1​−x>6​−2>0

Vậy vô nghiệm

Mai Thị Thúy
Xem chi tiết