\(\dfrac{a.b+1}{9}\) =\(\dfrac{a.c+2}{15}\)=\(\dfrac{b.c+3}{27}\)
và a.b+b.c+a.c=11.
Tìm a;b;c???
giúp mk vs. Cảm ơn các bn!!!!!
Tìm a,b,c biết:
a.b+1/9=a.c+2/15=b.c+3/27 và a.b+b.c+c.a=11 (. là nhân nhé các bạn ).
ai nhanh mình tick
Cho a,b,c khác 0 thỏa mãn:\(\dfrac{a.b+a.c}{2}=\dfrac{b.c+b.a}{3}=\dfrac{c.a+c.b}{4}\)CM \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{15}\)
tìm a+b, biết a.b-a.c+b.c-c^2= -1
Cho a,b, c khác 0 , thỏa mãn : \(\dfrac{a.b}{a+b}\) = \(\dfrac{b.c}{b+c}\) = \(\dfrac{a.c}{a+c}\)
Tính P = \(\dfrac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}\)
\(\dfrac{ab}{a+b}=\dfrac{bc}{b+c}=\dfrac{ca}{c+a}\)
\(\Leftrightarrow\dfrac{a+b}{ab}=\dfrac{b+c}{bc}=\dfrac{c+a}{ca}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{1}{b}+\dfrac{1}{c}\\\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{c}+\dfrac{1}{a}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{a}=\dfrac{1}{c}\\\dfrac{1}{b}=\dfrac{1}{a}\end{matrix}\right.\)
\(\Leftrightarrow a=b=c\)
\(\Rightarrow P=1\)
ta có \(\left\{{}\begin{matrix}\dfrac{ab}{a+b}=\dfrac{ac}{a+c}\\\dfrac{ab}{a+b}=\dfrac{bc}{b+c}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a.\dfrac{b}{a+b}=a.\dfrac{c}{c+a}\\b.\dfrac{a}{a+b}=b.\dfrac{c}{b+c}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{a+b}=\dfrac{c}{c+a}\\\dfrac{a}{a+b}=\dfrac{c}{b+c}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}1+\dfrac{b}{a}=1+\dfrac{c}{a}\\1+\dfrac{a}{b}=1+\dfrac{c}{b}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{b}{a}=\dfrac{c}{a}\\\dfrac{a}{b}=\dfrac{c}{b}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}b=c\\a=c\end{matrix}\right.\Rightarrow a=b=c\)
\(\Rightarrow P=\dfrac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\dfrac{a^3+a^3+a^3}{a^3+a^3+a^3}=1\)
Tìm a,b,c biết
a.b=2; b.c=6; a.c=3
Ta có : a.b.a.c = 2.3 = 6 ; a^2 .b.c = 6 mà b.c = 6 suy ra a^2 = 1.
Vậy a = 1. Từ đó suy ra : b = 2 ; c = 3
Nhân đơn thức A với đa thức (B + C), được ta
A. A.B + C
B. A.B + A.C
C. A + B.C
D. A + A.C
tìm các số a,b,c biết:
a.b=2,b.c=3,a.c=54
\(ab=2,bc=3,ac=54\)
\(\Rightarrow ab.bc.ac=2.3.54\)
\(\Rightarrow\left(abc\right)^2=324\)
\(\Rightarrow\left(abc\right)^2=18^2=\left(-18\right)^2\)
+)\(abc=18\)
\(\Rightarrow a=18:3=6\)
\(\Rightarrow b=18:54=\frac{1}{3}\)
\(\Rightarrow c=18:2=9\)
+)\(abc=-18\)
\(\Rightarrow a=-18:3=-6\)
\(\Rightarrow b=-18:54=\frac{-1}{3}\)
\(\Rightarrow c=-18:2=-9\)
Vậy :\(a\in\left(6;-6\right)\)
\(b\in\left(\frac{1}{3};\frac{-1}{3}\right)\)
\(c\in\left(9;-9\right)\)
Tìm a,b,c biết: a.b = c, b.c = 4a, a.c = 9b
tìm 3 số dương a,b,c biết a.b = c ; b.c = 4a ; a.c = 9b
Vì a, b, c là 3 số dương => a > 0 ; b > 0 ; c > 0
Ta có : a.b = c => b.c = b.a.b = a.b2 = 4a => b2 = 4 => b = 2 (vì b > 0)
b.c = 4a => 2.c = 4a => c = 2a
a.c = 9b => a.2a = 9.2 => 3a = 18 => a = 6
=> a.c = 9b => 6.c = 18 => c = 3
Vậy a = 6 , b = 2 , c = 3 thì thỏa mãn đề bài