CMR: Tổng lập phương của 3 số liên tiếp chia hết cho 9.
CMR: Tổng lập phương của 3 số nguyên liên tiếp chia hết cho 9.
cmr tổng lập phương của 3 số tự nhiên liên tiếp luôn chia hết cho 9
Lời giải:
Gọi 3 số tự nhiên liên tiếp là $a,a+1, a+2$
Tổng lập phương của 3 số tự nhiên liên tiếp:
$a^3+(a+1)^3+(a+2)^3=3a^3+9a^2+15a+9$
$=3(a^3+3a^2+5a+3)$
$=3(a+1)(a^2+2a+3)$
Nếu $a$ chia hết cho $3$ thì $a^2+2a+3\vdots 3$
$\Rightarrow 3(a+1)(a^2+2a+3)\vdots 9$
Nếu $a$ chia $3$ dư $1$
$\Rightarrow a+2\vdots 3\Rightarrow a(a+2)\vdots 3$
$\Rightarrow a^2+2a+3=a(a+2)+3\vdots 3$
$\Rightarrow 3(a+1)(a^2+2a+3)\vdots 9$
Nếu $a$ chia $3$ dư $2$ thì $a+1\vdots 3$
$\Rightarrow 3(a+1)(a^2+2a+3)\vdots 9$
Từ các TH trên suy ra $a^3+(a+1)^3+(a+2)^3=3(a+1)(a^2+2a+3)\vdots 9$ với mọi $a$
CMR: tổng các lập phương của 3 số nguyên liên tiếp thì chia hết cho 9 ?
vào đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
CMR Tổng các lập phương các 3 số liên tiếp thì chia hết cho 9
CMR tổng các lập phương của ba số nguyên liên tiếp chia hết cho 9
1/ Cho 2 số lẽ có hiệu các lập phương chia hết cho 8.CMR: hiệu 2 số đó cũng chia hết cho 8
2/ CM: Nếu bình phương thiếu của tổng hai số nguyên chia hết chi 6 thì tích 2 số ấy cũng chia hết cho 9
3/ CM: TỔng các lập phương của 3 sô nguyên liên tiếp thì chia hết cho 9
1) Gọi 2 số lẻ đó là a và b.
Ta có:
\(a^3-b^3\) chia hết cho 8
=> \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)chia hết cho 8
=> \(\left(a-b\right)\) chia hết cho 8 (đpcm)
CMR: Lập phương 3 số tự nhiên liên tiếp sẽ chia hết cho 9
mình chưa hiểu đề lắm
sao lại lập phương 3 số tự nhiên liên tiếp
gọi 3 số tự nhiên liên tiếp là a-1;a;a+1
ta có
\(\left(a-1\right)^3+a^3+\left(a+1\right)^3=a^3-3a^2+3a-1+a^3+a^3+3a^2+3a+1\)
\(=3a^3+6a=3a^3-3a+9a=3a\left(a^2-1\right)+9a=3\left(a-1\right)a\left(a+1\right)+9a\)
vì tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3
\(\Rightarrow3\left(a-1\right)a\left(a+1\right)⋮9\)
mà \(9a⋮9\)
vậy lập phương 3 số tự nhiên liên tiếp chia hết cho 9
CMR: Tổng lập phương của 3 số liên tiếp chia hết cho 9.
Ba số liên tiếp lần lượt là 3k;3k+1;3k+2
A=(3k)^3+(3k+1)^3+(3k+2)^3
=27k^3+(3k+1+3k+2)(9k^2+6k+1-9k^2-6k-3k-2+9k^2+12k+4)
=27k^3+(9k+3)(9k^2+9k+3)
=9[3k^3+(3k+1)(3k^2+3k+1] chia hết cho 9
Chứng minh tổng các lập phương của 3 số nguyên liên tiếp chia hết cho 9
Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1)
****chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9
(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a
= 3a(a^2 + 2) = 3a(a^2 - 1) + 9a
= 3(a - 1)a(a + 1) + 9a
vì tíck của 3 sôd tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9
Mặt khác 9a chia hết cho 9 nên
==>3(a - 1)a(a + 1) + 9a
Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1)
****chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9
(a - 1)^3 + a^3 + (a + 1)^3
=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1
= 3a^3 + 6a
= 3a(a^2 + 2)
= 3a(a^2 - 1) + 9a
= 3(a - 1)a(a + 1) + 9a
vì tíck của 3 sôd tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9
Mặt khác 9a chia hết cho 9 nên
=>3(a - 1)a(a + 1) + 9a
hay ta đc điều phải chứng minh