Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuấn Vũ
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
16 tháng 10 2019 lúc 17:55

\(B=\left(x-5+3y\right)^2+50-6xy\)

\(=x^2+25+9y^2-10x-30y+6xy+50-6xy\)

\(=x^2+9y^2-10x-30y+9y^2+75\)

\(=\left(x^2-10x+25\right)+\left(9y^2-30y+25\right)+25\)

\(=\left(x-5\right)^2+\left(3y-5\right)^2+25\ge25>0\) ( đpcm )

SAI ĐỀ

Thùy Linh Đào
Xem chi tiết
Cao Thị Thu Uyên
Xem chi tiết
Trần Thanh Phương
29 tháng 11 2018 lúc 21:05

a) M xác định \(\Leftrightarrow\hept{\begin{cases}x-3\ne0\\x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne3\\x\ne-2\end{cases}}}\)

b) \(M=\frac{\left(x-2\right)\left(x+2\right)}{\left(x-3\right)\left(x+2\right)}-\frac{5}{\left(x+2\right)\left(x-3\right)}\)

\(M=\frac{x^2-4-5}{\left(x-3\right)\left(x+2\right)}\)

\(M=\frac{x^2-9}{\left(x-3\right)\left(x+2\right)}\)

\(M=\frac{\left(x-3\right)\left(x+3\right)}{\left(x-3\right)\left(x+2\right)}\)

\(M=\frac{x+3}{x+2}\)

Đặng Tiến Dũng
Xem chi tiết
Võ Thanh Lâm
17 tháng 9 2016 lúc 18:55

3, A=(x-3)^2+(x-11)^2

\(\Rightarrow\)(X^2-3^2)+(x^2-11^2)

\(\Rightarrow\)(X^2-9)+(X^2-121)

Ta có :X^2 \(\ge\)0 và X^2 \(\ge\)0

\(\Rightarrow\)X^2 - 9 \(\le\)-9 và X^2- 121 \(\le\)-121

\(\Rightarrow\)(X^2-9)+(X^2-121)\(\le\)-130

Dấu = xảy ra khi : X=0

Vậy : Min A = -130 khi x=0

Mình mới lớp 7 sai thì thôi nhé

Hannah Smith
Xem chi tiết
Minh Anh
8 tháng 10 2016 lúc 15:01

a) \(\left(x+1\right)\left(x^2-x+1\right)-\left(x-1\right)\left(x^2+x+1\right)\)

\(=\left(x^3+1\right)-\left(x^3-1\right)\)

\(=x^3+1-x^3+1\)

 \(=2\)

Biểu thức trên có giá trị bằng 2 với mọi x nên không phụ thuộc vào biến.

b) \(\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)-\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)-27\left(2y^3-1\right)\)

\(=\left(8x^3+27y^3\right)-\left(8x^3-27y^3\right)-27\left(2y^3-1\right)\)

\(=8x^3+27y^3-8x^3+27y^3-54y^3+27\)

\(=27\)

Biểu thức trên có giá trị bằng 27 với mọi x nên không phụ thuộc vào biến.

c) \(\left(x-1\right)^3-\left(x+4\right)\left(x^2-4x+16\right)+3x\left(x-1\right)\)

\(=x^3-3x^2+3x-1-x^3-64+3x^2-3x\)

\(=-65\)

Biểu thức trên có giá trị bằng -65 với mọi x nên không phụ thuộc vào biến.

d) \(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=x^2+y^2+z^2+2\left(xy+yz+xz\right)+\left(x-y\right)^2+\left(x-z\right)^2+\left(y-z\right)^2-3\left(x^2+y^2+z^2\right)\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+x^2-2xy+y^2+x^2-2xz+z^2+y^2-2yz+z^2\)

\(=2\left(xy+yz+xz\right)-2\left(x^2+y^2+z^2\right)+2\left(x^2+y^2+z^2\right)-2\left(xy+yz+xz\right)\)

\(=0\)

Biểu thức trên có giá trị bằng 0 với mọi x nên không phụ thuộc vào biến.

Cao Thị Thu Uyên
Xem chi tiết
Trần Thanh Phương
29 tháng 10 2018 lúc 19:36

\(\left(2x+3y^2\right)^3\)

\(=8x^3+36x^2y^2+54xy^4+27y^6\)

Xét thấy hệ số của \(x^2y^2\)khi khai triển là 36

Vậy hệ số của \(x^2y^2\)khi khai triển \(\left(2x+3y^2\right)^3\)là \(36\)

Phạm Hoàng Nguyên
Xem chi tiết
forever young
3 tháng 4 2018 lúc 20:34

ta có \(x^2\)+\(4x\)-5 =0 \(\Rightarrow\)\(x^2\)-\(x\)+\(5x-5\)=0 \(\Rightarrow\)\(x\left(x-1\right)+5\left(x-1\right)=0\Rightarrow\left(x+5\right)\left(x-1\right)=0\)

\(\Rightarrow x-1=0\)hoặc \(x+5=0\)

\(x-1=0\Rightarrow x=1\)\(x+5=0\Rightarrow x=-5\)

\(\)vậy \(x\in(1;-5)\)

đúng thì k nha

LêThịPhươngThảo
3 tháng 4 2018 lúc 20:32

B=X^2-X+5X-5 =  X(X-1)+5(X-1)=(X-1)(X-5)=0

hoang
28 tháng 10 2018 lúc 23:21

thanks mấy bạn :)

Đinh Cẩm Tú
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
12 tháng 4 2021 lúc 19:05

Đặt bthuc = A nhé

ĐKXĐ : \(2x\ne3y\)

\(A=\left[\dfrac{2x\left(4x^2+6xy+9y^2\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{27y^3+36xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}-\dfrac{24xy\left(2x-3y\right)}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{2x\left(2x-3y\right)}{\left(2x-3y\right)}+\dfrac{9y^2+12xy}{\left(2x-3y\right)}\right]\)\(=\left[\dfrac{8x^3+12x^2y+18xy^2-27y^3-36xy^2-48x^2y+72xy^2}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\right]\left[\dfrac{4x^2-6xy+9y^2+12xy}{\left(2x-3y\right)}\right]\)

\(=\dfrac{8x^3-36x^2y+36xy^2-27y^3}{\left(2x-3y\right)\left(4x^2+6xy+9y^2\right)}\cdot\dfrac{4x^2+6xy+9y^2}{2x-3y}\)

\(=\dfrac{\left(2x-3y\right)^3}{\left(2x-3y\right)^2}=2x-3y\)

Với x = 1/3 ; y = -2 (tmđk) thay vào A ta được : A = 2.1/3 - 3.(-2) = 20/3

Cao Thị Thu Uyên
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
4 tháng 11 2018 lúc 20:14

(x2 + 2)2 - (2 + x)(x - 2)(x2 + 4) + 10

= (x2 + 2)2 - (4 - x2)(x2 + 4) + 10

= x4 + 4x2 + 4 - (16 - x4) + 10

= x+ 4x2 + 4 - 16 + x4 + 10

= 2x+ 4x2 - 2