tìm a và b sao cho f(x) chia hết cho g(x)
f(x)=\(x^4+2x^3-3x^2+ax+b\)
g(x)=\(x^2+3x-1\)
tìm a, b để f(x) chia hết cho g(x )
1 f(x)= x^4 - 3x^3 - ax +b g(x)= x^2-1
2, x^4 - 3x^3 + 3x^2 +2x +b g(x) = x^2-3x - 14
tìm x thuộc Z để gt của A(x) chia hết cho giá trị của B(x)
A(x) = 5x^3- x^2 + 1 B(x)= x - 5
tìm x thuộc Z để phân thức sau là số nguyên
x^3+x-1 / x+2
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
Bài 1: tìm a,b sao cho f(x)=x3+5x2+3x+a chia hết cho (x2+2x+b) với mọi x
Bài 2: Với giá trị nào của a thì đa thức f(x)= 2x4-7x3+ax2-5x+2 chia hết cho g(x)= x2-3x+2
1. Thực hiện phép chia đa thức: ta có kết quả:
\(x^3+5x^2+3x+a=\left(x+3\right)\left(x^2+2x+b\right)+\left(-3-b\right)x+a-3b\)
Để f(x) chia hết cho x2+2x+b thì -3-b=0 và a-3b=0 <=> b=-3; a=-9
1)Tìm a,b để đa thức f(x) chia hết cho g(x) vưới:
a) f(x) = x^4-x^3+6x^2-x+a ; g(x)= x^2-x+5
b) f(x) = 3x^3 + 10x^2 -5x+a ; g(x) = 3x+1
c) f(x) =x^3-3x+a ; g(x) = (x-1)^2
2)Thực hiện phép chia f(x) cho g(x) để tìm thg và dư ( đặt tính cột dọc or làm hàng ngang bt )
a) f(x) = 4x^3 - 3x^2 +1 ; g(x)= x^2+2x-1
b) f(x) = 2-4x+3x^4+7x^2-5x^3; g(x)=1+x^2-x
tìm a b để đa thức f(x) chia hết cho đa thức g(x), với
a)f(x)=x^4-9x^3+21x^2+ax+b,g(x)=x^2-x-2
b)f(x)=x^4-x^3+6x^2-x+a,g(x)=x^2-x+5
c)f(x)=3x^3+10x^2-5+a,g(x)=3x+1
d)f(x)=x^3-3x+a,g(x)=(x-1)^2
Bài 3: Tìm x để f(x) chia hết cho g(x) biết a) f(x)=x² -2x² + x+3; g(x) = x-1 b) f(x) =-2x +x +3x-4; g(x) = x+2
a: \(\Leftrightarrow x^3-x^2-x^2+x+3⋮x-1\)
\(\Leftrightarrow x-1\in\left\{-1;1;3;-3\right\}\)
hay \(x\in\left\{0;2;4;-2\right\}\)
f(x)=3x^4-12x^2+ax^2-6x+3b
g(x)=x^2-4x+3
h(x)=2x^4-20x^2+18
a) Tìm x để h(x)/g(x)=48
b) Xác định a và b để f(x) chia hết cho g(x)
cho đa thức f(x)=x^4 -3x^3+3x^2+ax+b
g(x)=x^2-3x-4.Tìm a,b để f(x) chia hết cho g(x)
f(x):g(x)
Để f(x) ⋮g(x) thì đa thức dư phải bằng 0 . do đó
\(\left\{{}\begin{matrix}a+21=0\\b+28=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=-21\\b=-28\end{matrix}\right.\)
Vậy a=-21;b=-28 thì f(x) chia hết g(x)
Tìm a, b để đa thức f(x) chia hết cho đa thức g(x), biết: f(x)=2x3-3x2+ax+b; g(x)=x2-x+2
Thực hiện phép chia đa thức \(f\left(x\right)\)cho \(g\left(x\right)\)ta được:
\(2x^3-3x^2+ax+b=\left(x^2-x+2\right)\left(2x-1\right)+\left(a-5\right)x+\left(b+2\right)\)
Để \(f\left(x\right)\)chia hết cho \(g\left(x\right)\)thì:
\(\hept{\begin{cases}a-5=0\\b+2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=5\\b=-2\end{cases}}\).
Bài 1 : Tìm p(x) biết p(x) chia cho x -1 dư -3 , chia cho x+1 dư 3 , p(x) chia cho x^2 -1 được thương 2x và còn dư p(x) = (x^2 -1) + ( 2x + ax + b )
Bài 2 : a) Xác định a và b để f(x ) = x^10 + ax^3 + b chia cho g(x) = x^2 -1 có dư 2x + 1
b) f(x) = 3x^3 + ax^2 + bx + 9 chia hết cho g(x) = x^2 -9
Bài 3 : CMR : x^8n + x^4n +1 chia hết cho x^2n + x^n +1