Phân tích đa thức thành nhân tử:
a, \(4x^4+4x^3-x^2-x\)
b. \(x^3+x+2x^{10}+x^8+x^6+x^4+x^2+1\)
Phân tích đa thức thành nhân tử:
a, \(4x^4+4x^3-x^2-x\)
b. \(x^3+x+2x^{10}+x^8+x^6+x^4+x^2+1\)
\(a,4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(x+1\right)\left(4x^3-x\right)\)
\(=x\left(x+1\right)\left(4x^2-1\right)\)
\(=x\left(x+1\right)\left(2x-1\right)\left(2x+1\right)\)
Phân tích đa thức thành nhân tử:
a) (x+1)(x+3)(x+4)(x+6)-7
b)(x+2)(x+3)(x+5)(x+6)-10
c) x(2x+1)(2x+3)(4x+8)-18
Phân tích đa thức thành nhân tử:
a) (x+1)(x+3)(x+4)(x+6)-7
b)(x+2)(x+3)(x+5)(x+6)-10
c) x(2x+1)(2x+3)(4x+8)-18
\(\left(x+1\right)\left(x+3\right)\left(x+4\right)\left(x+6\right)-7\)
\(=\left\{\left(x+1\right)\left(x+6\right)\right\}.\left\{\left(x+3\right)\left(x+4\right)\right\}-7\)
\(=\left(x^2+7x+6\right)\left(x^2+7x+12\right)-7\) \(\left(1\right)\)
đặt \(x^2+7x+9=a\)
<=> \(\left(1\right)=\left(a-3\right)\left(a+3\right)-7\)
\(=a^2-16\)
\(=\left(a-4\right)\left(a+4\right)\)
hay\(\left(1\right)=\) \(\left(x^2+7x+9-4\right)\left(x^2+7x+9+4\right)\)
\(=\left(x^2+7x+5\right)\left(x^2+7x+13\right)\)
những câu còn lại cũng nhóm đầu với cuối , hai cái giữa với nhau , xong làm tương tự câu trên
học tốt
a) (x + 1)(x + 3)(x + 4)(x + 6) - 7
= (x + 1)(x + 6) (x + 3)(x + 4) - 7
= (x2 + 7x + 6)(x + 7x + 12) - 7
Đặt t = x2 + 7x + 6
Ta có : t(t + 6) - 7
= t2 + 6t - 7
= t2 + 6t + 9 - 16
= (t + 3) - 16
= (t + 3 - 4)(t + 3 + 4)
= (t - 1)(t + 7)
Nên :
Pt = (x2 + 7x + 6 - 1)(x2 + 7x + 6 + 7)
= (x2 + 7x + 5)(x2 + 7x + 13)
Phân tích đa thức thành nhân tử:
a) (x+1)(x+3)(x+4)(x+6)-7
b)(x+2)(x+3)(x+5)(x+6)-10
c) x(2x+1)(2x+3)(4x+8)-18
Làm :
a) (x + 1)(x + 3)(x + 4)(x + 6) - 7
= (x + 1)(x + 6) (x + 3)(x + 4) - 7
= (x2 + 7x + 6)(x + 7x + 12) - 7
Đặt t = x2 + 7x + 6
Ta có : t(t + 6) - 7
= t2 + 6t - 7
= t2 + 6t + 9 - 16
= (t + 3) - 16
= (t + 3 - 4)(t + 3 + 4)
= (t - 1)(t + 7)
Nên :
Pt = (x2 + 7x + 6 - 1)(x2 + 7x + 6 + 7)
= (x2 + 7x + 5)(x2 + 7x + 13)
1) phân tích đa thức thành nhân tử
a) 4x^4 - 32x^2 + 1
b) x^6 + 27
c) 3(x^4 + x^2 + 1) - (x^2 - x + 1)
d) (2x^2 -4)^2 + 9
2) phân tích đa thức thành nhân tử
a) 4x^4 + 1
b) 64x^4 + y^4
c) x^8 + x^4 + 1
Phân tích đa thức thành nhân tử:
a) 25 y 2 + 10 y 8 +1;
b) ( x - 1 ) 4 - 2 ( x 2 - 2 x + 1 ) 2 +1;
c) (x + 1)(x + 2)(x + 3)(x + 4) - 24;
d) ( x 2 + 4 x + 8 ) 2 + 3 x ( x 2 + 4x + 8) + 2 x 2 ;
e) x 4 + 6 x 3 +7 x 2 -6x + 1.
Phân tích đa thức thành nhân tử.
1)x^4+2x^3-4x-4
2)(x+2)(x+4)(x+6)(x+8)+16
3)(x^2+x).(x^2+x+1)-6
4)(x^2+4x+8)^2+3x(x^2+4x+8)
ta có
\(5x=-3y=4z\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{12}=-\frac{y}{20}=\frac{3z}{45}=\frac{x-y+3z}{12+20+45}=\frac{7}{77}=\frac{1}{11}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{11}.12=\frac{12}{11}\\-y=\frac{1}{11}.20=\frac{20}{11}\\3z=\frac{1}{11}.45=\frac{45}{11}\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{12}{11}\\y=-\frac{20}{11}\\z=\frac{45}{11}:3=\frac{15}{11}\end{cases}}\)
Vậy \(\hept{\begin{cases}x=\frac{12}{11}\\y=\frac{-20}{11}\\z=\frac{15}{11}\end{cases}}\)
Phân tích đa thức thành nhân tử:
a) x(x-1)(x-2)(x-3)-3
b) (x+1)(x+3)(x+4)(x+6)-7
c)(x+2)(x+3)(x+5)(x+6)-10
d) x(2x+1)(2x+3)(4x+8)-18
a, \(x\left(x-1\right)\left(x-2\right)\left(x-3\right)-3\)
\(=\left[x\left(x-3\right)\right].\left[\left(x-1\right)\left(x-2\right)\right]-3\)
\(=\left(x^2-3x\right)\left(x^2-3x+2\right)-3\)
Đặt \(x^2-3x=t\Rightarrow x^2-3x+2=t+2\) Ta có:
\(x\left(x-1\right)\left(x-2\right)\left(x-3\right)-3\)
\(=t\left(t+2\right)-3\)
\(=t^2+2t-3\)
\(=t^2+3t-t-3\)
\(=t\left(t+3\right)-\left(t+3\right)\)
\(=\left(t-1\right)\left(t+3\right)=\left(x^2-3x-1\right)\left(x^2-3x+3\right)\)
Các ý khác cũng tương tự nhóm số đầu với số cuối và nhóm 2 số còn lại rồi đặt biến phụ.
b, \(\left(x^2+7x+5\right)\left(x^2+7x+13\right)\)
c, \(\left(x^2+8x+10\right)\left(x^2+8x+17\right)\)
d, \(\left(4x^2+8x-3\right)\left(4x^2+8x+6\right)\)
Chúc bạn học tốt.
Phân tích đa thức thành nhân tử:
a)(x+2)(x+3)(x+5)(x+6)-10
b) x(2x+1)(2x+3)(4x+8)-18
a) \(A=\left(x+2\right)\left(x+3\right)\left(x+5\right)\left(x+6\right)-10\)
\(=\left(x^2+8x+12\right)\left(x^2+8x+15\right)-10\)
Đặt \(x^2+8x+12=t\)
Khi đó ta có:
\(A=t\left(t+3\right)-10\)
\(=t^2+3t-10\)
\(=\left(t-2\right)\left(t+5\right)\)
Thay trở lại ta có:
\(A=\left(x^2+8x+10\right)\left(x^2+8x+17\right)\)
b) \(B=x\left(2x+1\right)\left(2x+3\right)\left(4x+8\right)-18\)
\(=\left(4x^2+8x\right)\left(4x^2+8x+3\right)-18\)
Đặt \(4x^2+8x=t\)
Khi đó ta có:
\(B=t\left(t+3\right)-18=t^2+3t-18=\left(t-3\right)\left(t+6\right)\)
Thay trở lại ta có:
\(B=\left(4x^2+8x-3\right)\left(4x^2+8x+6\right)=2\left(4x^2+8x-3\right)\left(2x^2+4x+3\right)\)
Phân tích đa thức thành nhân tử:
a)(x+2)(x+3)(x+5)(x+6)-10
b) x(2x+1)(2x+3)(4x+8)-18
Mọi người đã hướng dẫn bạn cách làm rồi mà.
a, Đặt A=...=(x+2)(x+6)(x+3)(x+5)-10=(x2+8x+12)(x2+8x+15)-10
Đặt x2+8x+12=y
=>A=y(y+3)-10=y2+3y-10=y2-2y+5y-10=y(y-2)+5(y-2)=(y-2)(y+5)=(x2+8x+12-2)(x2+8x+12+5)=(x2+8x+10)(x2+8x+17)
b, Đặt B=...=x(4x+8)(2x+1)(2x+3)-18=(4x2+8x)(4x2+8x+3)-18
Đặt 4x2+8x=t
=>B=t(t+3)-18=t2+3t-18=t2-3t+6t-18=t(t-3)+6(t-3)=(t-3)(t+6)=(4x2+8x-3)(4x2+8x+6)
phân tích đa thức thành nhân tử
a) 4x (a-b) +6xy(b-a)
b) (6x+3) - ( 2x-5) (2x+1)
c) 4 ( x-3)^2 +2x (3-x)
d) x^4 +2x^2 -4x-4
e) 2x (x+y) -x -y
g)( 3x-1 )^2 - (x+3)^2
a) \(4x\left(a-b\right)+6xy\left(b-a\right)\)
\(=4x\left(a-b\right)-6xy\left(a-b\right)\)
\(=\left(4x-6xy\right)\left(a-b\right)\)
\(=2x\left(2-3y\right)\left(a-b\right)\)
b) \(\left(6x+3\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=3\left(2x+1\right)-\left(2x-5\right)\left(2x+1\right)\)
\(=\left(3-2x+5\right)\left(2x+1\right)\)
\(=\left(8-2x\right)\left(2x+1\right)\)
\(=2\left(4-x\right)\left(2x+1\right)\)
g: \(\left(3x-1\right)^2-\left(x+3\right)^2\)
\(=\left(3x-1-x-3\right)\left(3x-1+x+3\right)\)
\(=\left(2x-4\right)\left(4x+2\right)\)
\(=4\left(x-2\right)\left(2x+1\right)\)