bài 1
cmr (a+b+c)^3-a^3 - b^3 - c^3=3*(a+b)*(b+c)*(c+a)
Bài 2
Cho x+1/x =3 tính giá trị biểu thức sau
a) x^2+1/x^2
b)x^3+1/x^3
Bài 1: CMR: Đẳng thức sau luôn nhận giá trị âm hoặc dương với mọi giá trị của biến:
a) ( x2 +2)2-( x -2). (x+2).(x2 +4)
b) -5-(x-1).(x+2)
Bài 2: Tìm giá trị nhỏ nhất của biểu thức:
a) A = 2x2 +y2- 2xy - 2x +3
b) B = (x+1).(x-2). (x-3). (x-6)
Bài 3: Cho: (a+b+c)2 = 3.(ab+bc+ac)
CMR: a=b=c.
Bài 4: thực hiện các phép tính, sau đó tính giá trị biểu thức:
b, B=(x+1)(x^7-x^6+x^5-x^4+x^3-x^2+x-1) với x=2
c, C=(x+1)(x^6-x^5+x^4-x^3+x^2-x+1) với x=2
d, D=2x(10x^2-5x-2)-5x(4x^2-2x-1) với x=-5
Bài 5: thực hiện phép tính, sau đó tính giá trị biểu thức:
a, A=(x^3-x^2y+xy^2-y^3)(x+y) với x=2,y=-1/2
b, B=(a-b)(a^4+a^3b+a^2b^2+ab^3+b^4) với a=3,b=-2
c, (x^2-2xy+2y^2)(x^2+y^2)+2x^3y-3x^2y^2+2xy^3 với x=-1/2;y=-1/2
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
bài 1 hãy viết các biểu thức sau dưới dạng tổng 3 bình phương
a/ (a + b + c)^2 + a^2 +b^2 + c^2
b/ 2*(a - b)*(c - b)+2*(b - a)*(c - a)+2*(b - c)*(a - c)
bài 2 tính giá trị của biểu thức a^4+b^4+c^4, biết rằng a + b + c = 0 và:
a/ a^2+b^2+c^2 = 2 b/ a^2+b^2+c^2 =1
bài 3 cho a + b + c = 0 .CM a^4+b^4+c^4 bằng mỗi biểu thức
a/ 2*(a^2*b^2 + b^2*c^2 + c^2*a^2 b/ 2*(a*b + b*c + c*a)^2
c/ (a^2+b^2+c^2)^2 phần 2
bài 4 CMR các biểu thức sau luôn có giá trị dương với mọi giá trị của biến : a/ 9*x^2 - 6*x + 2 b/ x^2 + x + 1 c/ 2*x^2 + 2*x + 1
bài 5 tìm GTNN của các biểu thức a/ A= x^2 - 3*x + 5 b/ B=(2*x -1 )^2 + (x + 2)^2
Bài 2: Thu gọn và tìm bậc của các đơn thức sau a) 2 5xy 2bx y ; b) 4 2 4 ab c 20a bx 5 ; c) 2 2 1 1,5xy bcx b 4 ; d) 2 3 2 2 1 2ax y x y zb 2 Bài 3: Cho biểu thức A = 2 3 𝑥 3 . 3 4 𝑥𝑦 2 . 𝑧 2 và B = 9x𝑦 3 . (−2𝑥 2𝑦𝑧 3 ) 1) Thu gọn và tìm bậc của đơn thức thu gọn A và B 2) Cho biết phần biến và phần hệ số của đơn thức thu gọn A và B 3) Tính tích của hai đơn thức thu gọn A và B. Bài 4:Cho đơn thức C = 2𝑥𝑦 2 ( 1 2 𝑥 2𝑦 2𝑥) ; D = 2 3 𝑥𝑦 2 . ( 3 2 𝑥) a) Thu gọn đơn thức C, D. Xác định phần hệ sô, phần biến, tìm bậc của đơn thức. b) Tính giá trị của đơn thức C tại x= 1, y = -1 c) Tính giá trị của đơn thức D tại x = -1, y = -2 d) Chứng minh đơn thức C,D luôn nhận giá trị dương với mọi x ≠ 0, y ≠ 0, Bài 5. Cho A = 3xy – 4xy + 10xy – xy a) Tính giá trị của A tại x = 1, y = -1 b) Tìm điều kiện của x, y để A > 0. c) Tìm điều kiện của x, y để A > 0. d) Tìm x, y nguyên để A = - 24
Bài 2: Thu gọn và tìm bậc của các đơn thức sau a) 2 5xy 2bx y ; b) 4 2 4 ab c 20a bx 5 ; c) 2 2 1 1,5xy bcx b 4 ; d) 2 3 2 2 1 2ax y x y zb 2 Bài 3: Cho biểu thức A = 2 3 𝑥 3 . 3 4 𝑥𝑦 2 . 𝑧 2 và B = 9x𝑦 3 . (−2𝑥 2𝑦𝑧 3 ) 1) Thu gọn và tìm bậc của đơn thức thu gọn A và B 2) Cho biết phần biến và phần hệ số của đơn thức thu gọn A và B 3) Tính tích của hai đơn thức thu gọn A và B. Bài 4:Cho đơn thức C = 2𝑥𝑦 2 ( 1 2 𝑥 2𝑦 2𝑥) ; D = 2 3 𝑥𝑦 2 . ( 3 2 𝑥) a) Thu gọn đơn thức C, D. Xác định phần hệ sô, phần biến, tìm bậc của đơn thức. b) Tính giá trị của đơn thức C tại x= 1, y = -1 c) Tính giá trị của đơn thức D tại x = -1, y = -2 d) Chứng minh đơn thức C,D luôn nhận giá trị dương với mọi x ≠ 0, y ≠ 0, Bài 5. Cho A = 3xy – 4xy + 10xy – xy a) Tính giá trị của A tại x = 1, y = -1 b) Tìm điều kiện của x, y để A > 0. c) Tìm điều kiện của x, y để A > 0. d) Tìm x, y nguyên để A = - 24
Bài 1: Chứng minh rằng :
cho ab=2;a+b=-3 tính giá trị biểu thức a^3 + b^3
Bài 2: rút gọn:
a, 2(x-y)×(x+y)+(x+y)^2(x-y)^2
b, x(x+4)×(x-4)-(x^2+1)×(x^2-1)
c, (a+b-c)-(a-c)^2-2ab+2ab
Bài 2:
b: Ta có: \(x\left(x+4\right)\left(x-4\right)-\left(x^2+1\right)\left(x^2-1\right)\)
\(=x^3-4x-x^4+1\)
\(=-x^4+x^3-4x+1\)
c: Ta có: \(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2ab\)
\(=\left(a+b-c-a+c\right)\left(a+b-c+a-c\right)\)
\(=b\left(2a+b-2c\right)\)
\(=2ab+b^2-2bc\)
\(a + b = -3\)
\(ab = 2\)
Từ \(ab = 2\), ta có thể giải ra được \(a = \frac{2}{b}\) hoặc \(b = \frac{2}{a}\).
Đặt \(a = \frac{2}{b}\) vào \(a + b = -3\) ta được:
\(\frac{2}{b} + b = -3\)
\(2 + b^2 = -3b\)
\(b^2 + 3b + 2 = 0\)
\((b + 1)(b + 2) = 0\)
\(b = -1\) hoặc \(b = -2\).
Khi \(b = -1\), ta có \(a = -2\). Khi \(b = -2\), ta có \(a = -1\).
Vậy giá trị của biểu thức \(A = a^3 + b^3\) khi \(a = -2, b = -1\) hoặc khi \(a = -1, b = -2\).
Bài 1 : Dùng hẳng thức triển khai các tích sau :
a ) ( 2x - 3y )*(2x+3y)
b ) ( 1+5a)*(1+5a)
c ) (2a+3b)*(2a+3b)
d) ( a+b+c)*(a+b+c)
e ) ( x+y-1)*(x-y-1)
Bài 2 : Rút gọn rồi tính giá trị của biểu thức :
1. M = ( 2x+y)^2-(2x+y)*(2x-y)*y*(x-y)với x=-2 ; y=3
2. N = ( a-3b)^2-(a+3b)^2-(a-1)*(b-2) với a=1/2;b=-3
3. P = (2x-5)*(2x+5)-(2x+1)^2 với x= -2005
4. Q = ( y-3)*(y+3)*(y^2+9)-(y^2+2)*(y^2-2) với y = 2013^2014
Bài 3 : Tìm x , biết :
a ) ( x-2)^2 -(x+3)^2-4*(x+1)=5
b) ( 2x-3)*(2x+3)-(x-1)^2-3x*(x-5)=-44
c ) (5x+1)^2-(5x+3)*(5x+3)=30
d) ( x+3 )^2+(x-2)*(x+2)-2*(x-1)^2=7
Bài 4 : So sánh :
a ) A = 2005*2007 và B = 2006^2
b ) (2+1)*(2^2+1)*(2^4+1)*(2^8+1) và D = 2^32
c ) ( 3+1)*(3^2+1)*(3^4+1)*(3^16+1)=3^32-1
Bài 5 : Tính nhanh :
1 ) 127^2+146*127+73^2
2) 9^8*2^8-(18^4+1)
3) 100^2 -99^3 +98^2-97^2+....+2^2-1^2
4 ) 180^2-220^2/125^2+150*125+75^2
5 ) ( 20^2 +18^2+16^2+....+4^2+2^2 ) -( 19^2+17^2+...+3^2+1^2 )
_____________________________________________________________________________
BÀI TẬP BỔ SUNG
Bài 1 : CM các BT sau có giá trị không âm
A = x^2-4x+9
B= 4x^2+4x+2007
C= 9-6x+x^2
D= 1-x+x^2
Bài 2 :
a . Cho a>b>0 ; 3a^2+3b^2 = 10ab . Tính P=a-b/a+b
b. Cho a>b>0 ; 2a^2+2b^2=5ab .Tính E= a+b/a-b
Bài 3 : Cho biểu thức : A = ( x-2)^2-(x+5)*(x-5)
a ) Rút gọn A
b) Tìm x để A = 1
c ) Tính giá trị của biểu thức A tại -3/4
Bài 6 :
a ) Tính nhanh : 2006^2-36
b ) CMR biểu thức sau có giá trị không âm :
1 . B= x^2-x+1
2. C = 2x^2 +y^2-2xy-10x+27
Bài 1 Rút gọn biểu thức
\(\frac{\left(x+\frac{1}{x^4}\right)-\left(x^4+\frac{1}{x^4}\right)-2}{\left(x+\frac{1}{x}\right)^4+x^2+\frac{1}{x^2}}.\frac{x^4+1999x^2+1}{2x^2}\)
Bài 2: Cho a,b,c thoả mãn
\(\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^2}{c^2+ca+a^2}=1006\)
tính giá trị biểu thức
M=\(\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+bc+c^2}+\frac{c^3+a^3}{c^2+ca+a^2}\)
bài 1: Tìm các giá trị của x để biểu thức sau có giá trị dương
a)A=x^2+4x
b)B=(x-3).(x+7)
c)C=(1/2-x).(1/3-x)
a) Ta có: A = x^2+4x
=>A= x(×+4)
Để A có gtri dương=>x và ( x+4) cùng dấu
Xét x và x+4 có gtri dương
=>x lớn hơn 0 (1)
Xét x và x+4 có gtri âm
=>x bé hơn -4. (2)
Từ (1) và (2) ta suy ra
Để A có gtri dương thì x phải lớn hơn 0 và bé hơn -4
b)
Ta có: B = (x-3)(x+7)
=> B = (x+(-3)) (x+7)
=> B = x^2+(-3)x+7x+(-21)
=> B =x(x+5)+(-21)
Để B có gtri dương => x(x+5)>21
Xét x = 1 => B=1(1+5)=6< 21( ko t/mãn)
Tương tự vs 2 ta cũng thấy ko thỏa mãn
Xét x =3=>B=3(3+5)=24>21( t/mãn)
Vậy để B có gtri dương thì x> 3
Còn câu c) thì tịttttttttttt..........(°¤°)
C=(1/2-x).(1/3-x) (1)
x | \(-\infty\) 1/3 1/2 \(+\infty\) |
1/2-x | - - 0 + |
1/3-x | - 0 + + |
(1/2-x).(1/3-x) | + 0 - 0 + |
(1) <=> x<1/3 hoac x>1/2
Vay voi x<1/3 va x>1/2 thi bieu thuc da cho co gia tri duong
TÔI NGHĨ BẠN NÊN LÀM CÁCH CỦA BẠN NGUYỄN CHÍ HẢI
bài 1: Tìm các giá trị của x để biểu thức sau có giá trị dương
a)A=x^2+4x
b)B=(x-3).(x+7)
c)C=(1/2-x).(1/3-x)