xác định a,b để đồ thị hàm số y=ax+b qua A(-1,2) và tạo với 2 trục tọa độ thành 1 tam giác cân
a) Viết pt đường thẳng y =ax +b biết đồ thị của nó đi qua điểm S (2;3) và cắt trục tọa độ tại hai điểm M,N sao cho tam giác OMN có diện tích bằng 2
b) Tìm m để đồ thị hàm số y=m2x +m +1 tạo vs các trục tọa độ một tam giác cân
2. cho hàm số y=kx+3-2x+k
a) xác định k để hàm số là hàm đồng biến
b) xác định k để đồ thị là đường thẳng đi qua M(1;3)
c) xác định k để đồ thị là đường thẳng cắt 2 trục tọa độ thành tam giác có diện tích bằng 1
http://lazi.vn/edu/exercise/cho-ham-so-y-kx-3-2x-k-a-xac-dinh-k-de-ham-so-la-ham-dong-bien-b-xac-dinh-k-de-do-thi-la-duong-thang
Bài 7: Cho hàm số y = (m - 2)x + m + 3 với m ≠ 2
a) Xác định giá trị của m để hàm số đồng biến, nghịch biến
b) Tìm m để đồ thị hàm số cắt hai trục tọa độ tạo thành tam giác có diện tích bằng 1.
Giúp mk nha
\(a,\) Đồng biến \(\Leftrightarrow m-2>0\Leftrightarrow m>2\)
Nghịch biến \(\Leftrightarrow m-2< 0\Leftrightarrow m< 2\)
\(b,\) PT giao Ox: \(y=0\Leftrightarrow\left(m-2\right)x=-\left(m+3\right)\Leftrightarrow x=\dfrac{m+3}{2-m}\Leftrightarrow A\left(\dfrac{m+3}{2-m};0\right)\Leftrightarrow OA=\left|\dfrac{m+3}{2-m}\right|\)
PT giao Oy: \(x=0\Leftrightarrow y=m+3\Leftrightarrow B\left(0;m+3\right)\Leftrightarrow OB=\left|m+3\right|\)
Theo đề: \(S_{OAB}=\dfrac{1}{2}OA\cdot OB=1\)
\(\Leftrightarrow\left|\dfrac{m+3}{2-m}\right|\left|m+3\right|=2\\ \Leftrightarrow\dfrac{\left(m+3\right)^2}{\left|2-m\right|}=2\\ \Leftrightarrow2\left|2-m\right|=\left(m+3\right)^2\\ \Leftrightarrow\left[{}\begin{matrix}2\left(2-m\right)=\left(m+3\right)^2\left(m\le2\right)\\2\left(m-2\right)=\left(m+3\right)^2\left(m>2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m^2+8m+5=0\left(m\le2\right)\\m^2+4m+13=0\left(vô.n_0\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}m=-4+\sqrt{11}\left(n\right)\\m=-4-\sqrt{11}\left(n\right)\end{matrix}\right.\)
Vậy ...
a:
b:
Sửa đề: Tính diện tích tam giác ABO
tọa độ A là:
\(\left\{{}\begin{matrix}y=0\\x+2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
Vậy: A(-2;0)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0+2=2\end{matrix}\right.\)
Vậy: B(0;2)
O(0;0) A(-2;0); B(0;2)
\(OA=\sqrt{\left(-2-0\right)^2+\left(0-0\right)^2}=\sqrt{4}=2\)
\(OB=\sqrt{\left(0-0\right)^2+\left(2-0\right)^2}=\sqrt{4}=2\)
\(AB=\sqrt{\left(0+2\right)^2+\left(2-0\right)^2}=2\sqrt{2}\)
Vì \(OA^2+OB^2=AB^2\)
nên ΔOAB vuông tại O
=>\(S_{OAB}=\dfrac{1}{2}\cdot OA\cdot OB=\dfrac{1}{2}\cdot2\cdot2=2\)
c: Sửa đề: Tính góc tạo bởi đường thẳng với trục ox
Gọi \(\alpha\) là góc tạo bởi đường thẳng y=x+2 với trục Ox
\(tan\alpha=a=1\)
=>\(\alpha=45^0\)
Xác định hàm số y= ax+ b biết đồ thị của nó:
a/đi qua điểm A(3;-4) và cắt trục tung tại điểm có tung độ bằng 2
b/cắt trục hoành tại điểm có hoành độ bằng -2 và // với đường thẳng có phương trình y=-4x + 4
c/ đi qua giao điểm của đường thẳng y=3x+6 với trục hoành và tạo với hai trục tọa độ 1 tam giác có diện tích =căn 6
a: Vì (d) đi qua A(3;-4) và (0;2) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-4\\b=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-2\\b=2\end{matrix}\right.\)
b: vì (d)//y=-4x+4 nên a=-4
Vậy:(d): y=-4x+b
Thay x=-2 và y=0 vào (d), ta được:
b+8=0
hay b=-8
1) xác định đồ thị hàm số bậc nhất \(y=ax+b\) trong mỗi trường hợp sau:
a) đồ thị hàm số đi qua A(-1; 2), B(2; -3)
b) đồ thị hàm số có hệ số góc là 2 và cắt trục tung tại điểm có tung độ là 2
c) đồ thị hàm số tạo với trục hoành 1 góc \(60^0\) và đi qua điểm B(1; -3)
giúp mk vs ah mk cần gấp
xác định hàm số y=ax+b,biết đồ thị (d) của nó đi qua điểm A (2;1,5) và B(8;-3).tính góc tạo bởi đường thẳng (d) với trục tọa độ