Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
do van tu
Xem chi tiết
Cỏ Cỏ
11 tháng 2 2017 lúc 22:24

Dk 1<x<2

√x^2 -x -2<x+2

5x+6>0

X > -6/5

Bpt vô nghiệm

Phi DU
Xem chi tiết
Nguyễn Quang Định
6 tháng 2 2017 lúc 10:43

1) Nhìn cái pt hết ham, nhưng bấm nghiệm đẹp v~`~

\(\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)=2x\sqrt{2}-\sqrt{2}\)

\(\Leftrightarrow\left(\sqrt{2}+2\right)\left(x\sqrt{2}-1\right)-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-\sqrt{2}+2x\sqrt{2}-2-2x\sqrt{2}+\sqrt{2}=0\)

\(\Leftrightarrow2x-2=0\Leftrightarrow2x=2\Rightarrow x=1\)

Nguyễn Quang Định
6 tháng 2 2017 lúc 10:45

Mấy bài kia sao cái phương trình dài thê,s giải sao nổi

Hoàng Quang Kỳ
Xem chi tiết
do linh
7 tháng 9 2018 lúc 20:20

ĐK:  \(x>1\)

\(pt\Leftrightarrow\sqrt{x\left(x-1\right)}-2\sqrt{x\left(x-1\right)}=x-2\)

\(\Leftrightarrow-\sqrt{x\left(x-1\right)}=x-2\)

\(\Leftrightarrow x\left(x-1\right)=x^2-4x+4\)

\(\Leftrightarrow x=\frac{4}{3}\)

Nguyễn Tuấn
Xem chi tiết
Nguyệt Hà
Xem chi tiết
Đăng Nhật Hoàng
Xem chi tiết
Julian Edward
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:15

a/ ĐKXĐ: ...

\(\Leftrightarrow2\sqrt{\frac{x}{x-1}}-\sqrt{\frac{x-1}{x}}=\frac{2\left(x-1\right)}{x}+3\)

Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)

\(\frac{2}{a}-a=2a^2+3\Leftrightarrow2a^3+a^2+3a-2=0\)

\(\Leftrightarrow\left(2a-1\right)\left(a^2+a+2\right)=0\Leftrightarrow a=\frac{1}{2}\)

\(\Rightarrow\sqrt{\frac{x-1}{x}}=\frac{1}{2}\Leftrightarrow4\left(x-1\right)=x\)

b/ ĐKXĐ: ...

\(\Leftrightarrow3\sqrt{\frac{2x}{x-1}}+4\sqrt{\frac{x-1}{2x}}=\frac{3\left(x-1\right)}{2x}+10\)

Đặt \(\sqrt{\frac{x-1}{2x}}=a>0\)

\(\frac{3}{a}+4a=3a^2+10\Leftrightarrow3a^3-4a^2+10a-3=0\)

\(\Leftrightarrow\left(3a-1\right)\left(a^2-a+3\right)=0\Leftrightarrow a=\frac{1}{3}\)

\(\Leftrightarrow\sqrt{\frac{x-1}{2x}}=\frac{1}{3}\Leftrightarrow9\left(x-1\right)=2x\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:19

c/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{\frac{x}{3-2x}}+5\sqrt{\frac{3-2x}{x}}=\frac{4\left(3-2x\right)}{x}+5\)

Đặt \(\sqrt{\frac{3-2x}{x}}=a>0\)

\(\frac{1}{a}+5a=4a^2+5\Leftrightarrow4a^3-5a^2+5a-1=0\)

\(\Leftrightarrow\left(4a-1\right)\left(a^2-a+1\right)=0\Leftrightarrow a=\frac{1}{4}\)

\(\Leftrightarrow\sqrt{\frac{3-2x}{x}}=\frac{1}{4}\Leftrightarrow16\left(3-2x\right)=x\)

d/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x-1}{x}}=a>0\)

\(a^2-2a=3\Leftrightarrow a^2-2a-3=0\Rightarrow\left[{}\begin{matrix}a=-1\left(l\right)\\a=3\end{matrix}\right.\)

\(\Leftrightarrow\sqrt{\frac{x-1}{x}}=3\Leftrightarrow x-1=9x\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
23 tháng 10 2019 lúc 14:23

e/ ĐKXĐ: ...

Đặt \(\sqrt{\frac{x}{x-1}}=a>0\)

\(a+\frac{1}{a}=\frac{3}{\sqrt{2}}\Leftrightarrow a^2-\frac{3}{\sqrt{2}}a+1=0\)

\(\Rightarrow\left[{}\begin{matrix}a=\sqrt{2}\\a=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{\frac{x}{x-1}}=\sqrt{2}\\\sqrt{\frac{x}{x-1}}=\frac{\sqrt{2}}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\left(x-1\right)\\2x=x-1\end{matrix}\right.\)

f/ ĐKXĐ: ...

\(\Leftrightarrow\sqrt{\frac{x^2-1}{x}}=\frac{1-x}{\sqrt{x}}\)

Bình phương 2 vế:

\(\frac{x^2-1}{x}=\frac{\left(1-x\right)^2}{x}\Leftrightarrow x^2-1=x^2-2x+1\)

\(\Rightarrow x=1\)

Khách vãng lai đã xóa
Lê Đức Anh
Xem chi tiết
❤NgocAnh❤
12 tháng 7 2020 lúc 8:09

Bạn vào link này để xem bài làm của mik nha

large_1594515830440.jpg (768×1024)

Khách vãng lai đã xóa
❤NgocAnh❤
12 tháng 7 2020 lúc 8:09

Mik ko gửi đc link , ib riêng nhé

Khách vãng lai đã xóa
Nguyễn Linh Chi
13 tháng 7 2020 lúc 16:58

Câu 1: 

ĐK: x  khác 0 

TH1: x > 0 

\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)

<=> \(\frac{1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)

Đặt: \(\sqrt{1+\frac{1}{x^2}}=t>1\)ta có phương trình: 

\(\frac{1}{t}+\frac{t^2-1}{2}=2\)

<=> \(t^3-5t+2=0\)

<=> \(\)\(t=2\) (  có 3 nghiệm; loại 2 nghiệm vì  t > 1 ) 

Với t = 2 ta có: \(\sqrt{1+\frac{1}{x^2}}=2\Leftrightarrow\frac{1}{x^2}=3\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{\sqrt{3}}\left(tm\right)\\x=-\frac{1}{\sqrt{3}}\left(l\right)\end{cases}}\)

TH2: x < 0 

\(\frac{x}{\sqrt{x^2+1}}+\frac{1}{2x^2}=2\)

<=> \(\frac{-1}{\sqrt{1+\frac{1}{x^2}}}+\frac{1}{2x^2}=2\)

Đặt: \(\sqrt{1+\frac{1}{x^2}}=t>1\)

Ta có phương trình: \(-\frac{1}{t}+\frac{t^2-1}{2}=2\)<=> \(t=1+\sqrt{2}\)

khi đó: \(\sqrt{1+\frac{1}{x^2}}=1+\sqrt{2}\)

<=> \(1+\frac{1}{x^2}=1+2\sqrt{2}+2\)

<=> \(x^2=\frac{1}{2\sqrt{2}+2}\)

<=> \(x=-\sqrt{\frac{1}{2\sqrt{2}+2}}\)( thỏa mãn) hoặc \(x=\sqrt{\frac{1}{2\sqrt{2}+2}}\) loại 

Kết luận:...

Khách vãng lai đã xóa
Nguyễn Hoài Phương
Xem chi tiết