Tìm các giá trị của m để pt có 4 nghiệm p.b
\(\left|x^2-2\right|=m^4-m^2\)
tìm các giá trị của tham số m để pt \(\left(m-2\right)x^4-2\left(m+1\right)x^2-3=0\) có đúng 2 nghiệm phân biệt
Với \(m=2\Rightarrow6x^2+3=0\) (vô nghiệm)
Với \(m\ne2\) đặt \(x^2=t\ge0\Rightarrow\left(m-2\right)t^2-2\left(m+1\right)t-3=0\) (1)
Ứng với mỗi \(t>0\Rightarrow\) luôn có 2 giá trị x phân biệt tương ứng thỏa mãn
\(\Rightarrow\) Pt đã cho có đúng 2 nghiệm pb khi và chỉ khi (1) có 2 nghiệm trái dấu
\(\Leftrightarrow ac< 0\Leftrightarrow-3\left(m-2\right)< 0\Leftrightarrow m>2\)
giải chi tiết với ak
cho pt ẩn x: \(x^2-2\left(m-3\right)x+m^2+3=0\) với m là tham số
a) tìm giá trị của m để pt có 2 nghiệm
b) gọi \(x_1,x_2\) là 2 nghiệm của pt. tìm m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn hệ thức \(\left(x_1-x_2\right)^2-5x_1x_2=4\)
a) ∆' = [-(m - 3)]² - (m² + 3)
= m² - 6m + 9 - m² - 3
= -6m + 6
Để phương trình đã cho có 2 nghiệm thì ∆' ≥ 0
⇔ -6m + 6 ≥ 0
⇔ 6m ≤ 6
⇔ m ≤ 1
Vậy m ≤ 1 thì phương trình đã cho luôn có 2 nghiệm
b) Theo định lý Viét, ta có:
x₁ + x₂ = 2(m - 3) = 2m - 6
x₁x₂ = m² + 3
Ta có:
(x₁ - x₂)² - 5x₁x₂ = 4
⇔ x₁² - 2x₁x₂ + x₂² - 5x₁x₂ = 4
⇔ x₁² + 2x₁x₂ + x₂² - 2x₁x₂ - 2x₁x₂ - 5x₁x₂ = 4
⇔ (x₁ + x₂)² - 9x₁x₂ = 4
⇔ (2m - 6)² - 9(m² + 3) = 4
⇔ 4m² - 24m + 36 - 9m² - 27 = 4
⇔ -5m² - 24m + 9 = 4
⇔ 5m² + 24m - 5 = 0
⇔ 5m² + 25m - m - 5 = 0
⇔ (5m² + 25m) - (m + 5) = 0
⇔ 5m(m + 5) - (m + 5) = 0
⇔ (m + 5)(5m - 1) = 0
⇔ m + 5 = 0 hoặc 5m - 1 = 0
*) m + 5 = 0
⇔ m = -5 (nhận)
*) 5m - 1 = 0
⇔ m = 1/5 (nhận)
Vậy m = -5; m = 1/5 thì phương trình đã cho có 2 nghiệm thỏa mãn yêu cầu
a: \(\Delta=\left[-2\left(m-3\right)\right]^2-4\cdot1\cdot\left(m^2+3\right)\)
\(=\left(2m-6\right)^2-4\left(m^2+3\right)\)
\(=4m^2-24m+36-4m^2-12=-24m+24\)
Để phương trình có hai nghiệm thì \(\Delta>=0\)
=>-24m+24>=0
=>-24m>=-24
=>m<=1
b: Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-\left[-2\left(m-3\right)\right]}{1}=2\left(m-3\right)\\x_1\cdot x_2=\dfrac{c}{a}=m^2+3\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2-5x_1x_2=4\)
=>\(\left(x_1+x_2\right)^2-4x_1x_2-5x_2x_1=4\)
=>\(\left(x_1+x_2\right)^2-9x_1x_2=4\)
=>\(\left(2m-6\right)^2-9\left(m^2+3\right)=4\)
=>\(4m^2-24m+36-9m^2-27-4=0\)
=>\(-5m^2-24m+5=0\)
=>\(-5m^2-25m+m+5=0\)
=>\(-5m\left(m+5\right)+\left(m+5\right)=0\)
=>(m+5)(-5m+1)=0
=>\(\left[{}\begin{matrix}m+5=0\\-5m+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-5\left(nhận\right)\\m=\dfrac{1}{5}\left(nhận\right)\end{matrix}\right.\)
Tìm tất cả các giá trị m để pt \(x^4-\left(3m+1\right)x^2+6m-2=0\) có 4 nghiệm pb lớn hơn -4
Lời giải:Đặt $x^2=t$ thì PT ban đầu trở thành:
$t^2-(3m+1)t+6m-2=0 (1)$Để PT ban đầu có 4 nghiệm phân biệt thì $(1)$ phải có 2 nghiệm dương phân biệt.
Điều này xảy ra khi: \(\left\{\begin{matrix} \Delta=(3m+1)^2-4(6m-2)>0\\ S=3m+1>0\\ P=6m-2>0\end{matrix}\right.\Leftrightarrow m\neq 1; m>\frac{1}{3}\)
Khi đó, 4 nghiệm phân biệt là:
$x_1=\sqrt{t_1}; x_2=-\sqrt{t_1}; x_3=\sqrt{t_2}; x_4=-\sqrt{t_2}$
Hiển nhiên $x_1, x_3>-4$
Giờ ta cần $-\sqrt{t_1}; -\sqrt{t_2}>-4$
$\Leftrightarrow \sqrt{t_1}, \sqrt{t_2}< 4$
$\Rightarrow t_1, t_2< 16$. Điều này xảy ra khi:
\(\left\{\begin{matrix} t_1+t_2<32\\ (t_1-16)(t_2-16)>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} t_1+t_2< 32\\ t_1t_2-16(t_1+t_2)+256>0\end{matrix}\right.\)
\(\left\{\begin{matrix} 3m+1<32\\ 238-42m>0\end{matrix}\right.\Leftrightarrow m< \frac{17}{3}\)
Vậy \(m\in (\frac{1}{3}; \frac{17}{3}); m\neq 1\)
Cho bất phương trình \(\left(m^2-4\right)x^2+\left(m-2\right)x+1< 0\). Tìm tất cả các giá trị tham số m lm bất pt vô nghiệm có dạng \((-\infty;4]\cup[b;+\infty)\). Tính giá trị a.b
\(m\left(x+4\right)\sqrt{x^2+2}=5x^2+8x+24\) Tìm các giá trị của tham số m để pt có nghiệm thực
cho PT\(x^2-\left(m-2\right)x-m^2+3m-4=0\)
tìm m để tỉ số 2 nghiệm của PT có giá trị tuyệt đối là 2
Theo talet ta có:
\(\hept{\begin{cases}x1+x2=-\frac{b}{a}=m-2\left(1\right)\\x1.x2=\frac{c}{a}=-m^2+3m-4\left(2\right)\end{cases}}\)
Theo đề bài ta có: \(\left|\frac{x1}{x2}\right|=2\)
TH1: \(x1=2.x2\)
Thay vào (1) ta đc: \(3.x2=m-2\Leftrightarrow x2=\frac{m-2}{3}\)
Thay \(x1=2.\frac{m-2}{3};x2=\frac{m-2}{3}\)vào (2) ta đc:
\(\frac{2.\left(m-2\right)^2}{9}=-m^2+3m-4\)(vô nghiệm)
TH2: \(x1=-2.x2\)
Thay vào (1) ta đc: \(-x2=m-2\Leftrightarrow x2=2-m\)
Thay \(x1=-2.\left(2-m\right);x2=2-m\)vào (2) ta đc:
\(-2\left(m-2\right)^2=-m^2+3m-4\Leftrightarrow\orbr{\begin{cases}m=4\\m=1\end{cases}}\)
Vậy m=4 hoặc m=1
Giải hệ pt này là ra
\(\hept{\begin{cases}x_1+x_2=m-2\\x_1.x_2=-m^2+3m-4\\\left|\frac{x_1}{x_2}\right|=2\end{cases}}\)
a, cho pt : \(2x^2+\left(2m-1\right)x+m-1=0\)
TÌm hệ thức giữa 2 nghiệm x1; x2 ko phụ thuộc vào tham số m
b, cho pt: \(\left(m+2\right)x^2-2\left(m+1\right)x+m-4=0\) \(\left(m\ne-2\right)\)
tìm m để pt có 2 nghiệm trái dấu trong đó nghiệm dương có giá trị tuyệt đối lớn hơn.
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
Tìm tất cả các giá trị của m để PT có nghiệm:
\(\left(2m^2-5m+2\right)\left(x-1\right)^{2021}\left(x^{2020}-2\right)+2x^2+3=0\), (m là tham số)
Nếu phương trình là \(\left(2m^2-5m+2\right)\left(x-1\right)^{2021}\left(x^{2020}-2\right)+2x^2-3=0\) thì còn có cơ hội giải quyết
Chứ đề đúng thế này thì e rằng không có cơ hội nào cả.
1. Tìm m để pt : \(x^2-\left(2m-3\right)x+m^2-4=0\) có 2 nghiệm pb sao cho tổng bp 2 nghiệm <17
2. Tìm m để pt \(x^4-\left(m+1\right)x^2+m^2-m+2=0\) có 3 nghiệm pb
3. Tìm m để pt \(x^2-6x+m-2=0\) có 2 nghiệm x>0
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
3.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)
\(\Leftrightarrow2< m< 11\)