Cho \(A=\dfrac{2x^2-3x+5}{x^2-2x-1}\)
Tìm \(x\in Z\)để \(A\in Z\)
Cho biểu thức: \(A=\left(\dfrac{2+x}{2-x}-\dfrac{4x^2}{x^2-4}-\dfrac{2-x}{2+x}\right):\dfrac{x^2-3x}{2x^2-x^3}\)
Với x≠±2,x≠0,x≠3
a, Rút gọn biểu thức A
b,Tính giá trị của A khi x=12
c, Tính x khi A=1
d, Tìm x∈Z để A nguyên
e, Tìm x để biểu thức A>4
Lời giải:
a.
\(A=\left[\frac{(2+x)^2}{(2-x)(2+x)}+\frac{4x^2}{(2-x)(2+x)}-\frac{(2-x)^2}{(2-x)(2+x)}\right]:\frac{x(x-3)}{x^2(2-x)}\)
\(=\frac{(2+x)^2+4x^2-(2-x)^2}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x(x+2)}{(2-x)(2+x)}.\frac{x^2(2-x)}{x(x-3)}=\frac{4x^2}{x-3}\)
b.
Khi $x=12$ thì $A=\frac{4.12^2}{12-3}=64$
c.
$A=1\Leftrightarrow \frac{4x^2}{x-3}=1$
$\Leftrightarrow 4x^2=x-3$
$\Leftrightarrow 4x^2-x+3=0$
$\Leftrightarrow (2x-\frac{1}{4})^2=-\frac{47}{16}< 0$ (vô lý)
Vậy không tồn tại $x$
d. Để $A$ nguyên thì $\frac{4x^2}{x-3}$ nguyên
$\Leftrightarrow 4x^2\vdots x-3$
$\Leftrightarrow 4(x^2-9)+36\vdots x-3$
$\Leftrightarrow 36\vdots x-3$
$\Leftrightarrow x-3\in\left\{\pm 1;\pm 2;\pm 3;\pm 4;\pm 9; \pm 12; \pm 36\right\}$
Đến đây bạn có thể tự tìm $x$ được rồi, chú ý ĐKXĐ để loại ra những giá trị không thỏa mãn.
e.
$A>4\Leftrightarrow \frac{4x^2}{x-3}>4$
$\Leftrightarrow \frac{x^2}{x-3}>1$
$\Leftrightarrow \frac{x^2-x+3}{x-3}>0$
$\Leftrightarrow x-3>0$ (do $x^2-x+3>0$ với mọi $x$ thuộc ĐKXĐ)
$\Leftrightarrow x>3$. Kết hợp với đkxđ suy ra $x>3$
cho \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}\)
a, Tìm đkxđ của A
b, Tính A khi x=\(3+2\sqrt{2}\)
c, Tìm x khi A=\(\dfrac{1}{2}\)
d,Tìm x khi A>2
e, Tìm \(x\in Z\) để A nguyên
a) \(đk:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b) \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{2}+1\right)-1}{\sqrt{2}+1-2}=\dfrac{2\sqrt{2}+1}{\sqrt{2}-1}\)
c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{1}{2}\)
\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}-2\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
d) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}>2\)
\(\Leftrightarrow2\sqrt{x}-1>2\sqrt{x}-4\Leftrightarrow-1>-4\left(đúng\forall x\right)\)
e) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}-2}=2+\dfrac{3}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(x\ge0\)
\(\Rightarrow x\in\left\{1;9;25\right\}\)
tìm x∈Z để:
a,3x - 2/x+3
b,x^2 - 2x +4/x + 1
tìm x \(\in Z\)
a) \(\dfrac{x-3}{2x+1}\in Z\)
b) \(\dfrac{5x-4}{2x+1}\in Z\)
c) \(\dfrac{x^2-3x-1}{x+2}\in Z\)
\(\text{Cho }A=\left(\dfrac{3x^2+3}{x^3-1}-\dfrac{x-1}{x^2+x+1}-\dfrac{1}{x-1}\right):\dfrac{2x^2-5x+5}{x-2}\)
\(\text{a, Rút gọn }\)
\(\text{b, Tìm }x\in Z\)\(\text{ để }A\in Z\)
a: A=[(3x^2+3-x^2+2x-1-x^2-x-1)/(x-1)(x^2+x+1)]*(x-2)/2x^2-5x+5
=(x^2+x+1)/(x-1)(x^2+x+1)*(x-2)/2x^2-5x+5
=(x-2)/(2x^2-5x+5)(x-1)
Tìm \(x\in Z\) để \(A\in Z\), \(B\in Z\)
a) \(A=\frac{3x^2-8x+1}{x-3}\) \(B=\frac{x^4+2x^3+5x+10}{x^2+4x+4}\)
\(A=\frac{3x^2-8x+1}{x-3}=\frac{3\left(x^2-6x+9\right)+10\left(x-3\right)+4}{x-3}=\frac{3\left(x-3\right)^2+10\left(x-3\right)+4}{x-3}=3\left(x-3\right)+10+\frac{4}{x-3}\)
A là số nguyên khi (x-3) là ước của 4 . Liệt kê ra.
Cho phân thức C=\(\dfrac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}\)
a, Tìm điều kiện của x để P xác định
b, Tìm giá trị của x để phân thức bằng 1
`a)ĐK:(x+1)(2x-6) ne 0`
`<=>(x+1)(x-3) ne 0`
`<=> x ne -1,x ne 3`
`b)C=(3x^2+3x)/((x+1)(2x-6))`
`=(3x(x+1))/((x+1)(2x-6))`
`=(3x)/(2x-6)`
`C=1`
`=>3x=2x-6`
`<=>x=-6(tm)`
Vậy `x=-6`
1. Cho A= 2x2 - 3x2 + 1
a, Tính gt của A khi giá trị tuyệt đối của x+1 = 1
b, Tìm x để A = 1
c, Tìm x để A = 3x2 + 1
2. Cho B = \(\dfrac{4}{2x^2+1}\)
a, Tìm x khi B = 1
b, Tìm x \(\in\) Z để B \(\in\) Z
3. Cho C = \(\dfrac{2x+1}{2x-3}\)
a, Tính C khi ( x +1 )2 = 4
b, Tìm x để C = 2
c, Tìm x \(\in\) Z để C \(\in\) 2
Bài 2:
a: Để B=1 thì \(2x^2+1=4\)
\(\Leftrightarrow x^2=\dfrac{3}{2}\)
hay \(x=\pm\dfrac{\sqrt{6}}{2}\)
b: Để B là số nguyên thì \(2x^2+1\inƯ\left(4\right)\)
\(\Leftrightarrow2x^2+1\in\left\{1;2;4\right\}\)
hay \(x\in\left\{0;\dfrac{\sqrt{2}}{2};-\dfrac{\sqrt{2}}{2};-\dfrac{\sqrt{6}}{2};\dfrac{\sqrt{6}}{2}\right\}\)
Cho biểu thức
A = \(\left(\dfrac{x}{x^2-4}+\dfrac{1}{x+2}-\dfrac{2}{x-2}\right):\dfrac{x}{1-x+2}\)
( Với x ≠ +2,-2 )
a, Rút gọn A
b, Tìm giá trị của A khi x=-4
c, Tìm x ∈ Z để A ∈ Z
a: \(A=\dfrac{x+x-2-2x-4}{\left(x-2\right)\left(x+2\right)}\cdot\left(\dfrac{x+2-2x}{1-x}\right)\)
\(=\dfrac{-6}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{\left(x-2\right)}{x-1}\)
\(=\dfrac{-6}{\left(x+2\right)\left(x-1\right)}\)
b: Thay x=-4 vào A, ta được:
\(A=-\dfrac{6}{\left(-4+2\right)\left(-4-1\right)}=\dfrac{-6}{-2\cdot\left(-5\right)}=\dfrac{-6}{10}=\dfrac{-3}{5}\)