Giải hệ phương trình: \(\hept{\begin{cases}x^2-5xy-3x+1=0\\4y^2+xy+6y+1=0\end{cases}}\)
Gỉai hệ phương trình \(\hept{\begin{cases}x^2-5xy-3x+1=0\\4y^2+xy+6y+1=0\end{cases}}\)
Giải hệ phương trình: \(\hept{\begin{cases}x^2-5xy-3x+1=0\\4y^2+xy+6y+1=0\end{cases}}\)
Bài 1: Giải hệ phương trình:
\(\hept{\begin{cases}x^2+32y^2=9y^4=\frac{272}{9}\\x^2+y^2+xy+4=3x+4y\end{cases}}\)
Bài 2: Giải hệ phương trình:
\(\hept{\begin{cases}x^2-xy-3y^2+3x-y-1=0\\xy+y^2-x+3y=0\end{cases}}\)
Bài 3: Giải hệ phương trình:
\(\hept{\begin{cases}x^2+3xy-9y^2+23y-17=0\\x^2-2xy+3y^2-6y-3=0\end{cases}}\)
Ai nhanh và đúng mình sẽ cho đúng và thêm bạn bè nhé. Thanks! Làm ơn giúp mình !!! PLEASE !!!
giải hệ phương trình \(\hept{\begin{cases}x^2-2y^2+3y-3x+xy=0\\2x^2-15xy+4y^2-12x+45y-24=0\end{cases}}\)
Gợi ý này bây bê
Lấy pt (1) nhân với 2 rồi nhân chia cộng trừ các kiểu với pt (2)
Từ đó rồi blblblblbll sẽ tìm đc mqh x vs y
Tự túc
Giải hệ phương trình: \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\\x^2+y^2+xy-3x-4y+4=0\end{cases}}\)
Xét phương trình bậc hai theo x: \(x^2+x\left(y-3\right)+y^2-4y+4=0\)
\(=\left(y-3\right)^2-4\left(y-2\right)^2\le0\Leftrightarrow\left(y-1\right)\left(3y-7\right)\le0\Leftrightarrow1\le y\le\frac{7}{3}\)
Tương tự xét pt bậc hai theo y thì ta có: \(0\le x\le\frac{4}{3}\)
\(\Rightarrow x^4+y^2\le\left(\frac{4}{3}\right)^4+\left(\frac{7}{3}\right)^2=\frac{697}{81}\)
\(\Rightarrow x=\frac{4}{3}\)và \(y=\frac{7}{3}\)
Thử lại thấy không thỏa mãn hệ phương trình
Vậy phương trình vô nghiệm
Đoán nhận số nghiệm của mỗi hệ phương trình sau, giải thích?
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\) b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\) c) \(\hept{\begin{cases}4x-4y=2\\-2x+2y=-1\end{cases}}\)
a) \(\hept{\begin{cases}x+y=2\\3x+3y=2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}3x+3y=6\\3x+3y=2\end{cases}}\)
Dễ thấy điều trên là vô lí nên hệ phương trình không có nghiệm
b) \(\hept{\begin{cases}3x-2y=1\\-6x+4y=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}6x-4y=2\\6x-4y=0\end{cases}}\)
Hệ này cũng vô nghiệm
c) \(\hept{\begin{cases}4x-4y=2\\-2x+2y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x-2y=1\\2x-2y=1\end{cases}}\)
Hệ này có vô số nghiệm
giải các hệ phương trình sau
a) \(\hept{\begin{cases}x^2+y^2-2xy=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
b)\(\hept{\begin{cases}xy+2x-y-2=0\\xy-3x+2y=0\end{cases}}\)
hãy dùng cái đầu bạn nhé :))))
\(a,\hept{\begin{cases}\left(x-y\right)^2=1\\2x^2+2y^2-2xy-y=0\end{cases}}\)
Xét từng TH với x-y=1 và x-y=-1
\(b,\hept{\begin{cases}\left(x-1\right)\left(y+2\right)=0\\xy-3x+2y=0\end{cases}}\)
Xét từng TH x=1 và y=-2
109ubbbbbbbhy3333333333333
Giải hệ phương trình:
a) \(\hept{\begin{cases}x^4+y^4=\frac{697}{81}\\x^2+y^2+xy-3x-4y+4=0\end{cases}}\)
b) \(\hept{\begin{cases}\left(x^2+y^2\right)\left(x^2-y^2\right)=144\\\sqrt{x^2+y^2}-\sqrt{x^2-y^2}=y\end{cases}}\)
c) \(\hept{\begin{cases}xy+x+1=7y\\x^2y^2+xy+1=13y^2\end{cases}}\)
Giải hệ phương trình:
\(\hept{\begin{cases}2x^2-15xy+4y^2-12x+45y-24=0\\x^2+xy-2y^2-3x-3y\end{cases}}\)
PT trình thứ 2 thiếu vp
Giải kiểu gì được khi một trong những nghiệm của nó là thế này:
Có lẽ chị đánh nhầm đề chăng?