1.Tìm giá trị lớn nhất của M = \(\dfrac{2018}{\left|x+2\right|+2019}\)
GIÚP MÌNH VỚI NHA NĂN NỈ ĐÓ
cho phương trình \(x^2-4mx+3m^2-3=0\) (1)
tìm tất cả các giá trị của m để phương trình (1) có 2 nghiệm x1;x2 saocho \(P=\dfrac{2019}{\left|x1-x2\right|}\)
đạt giá trị lớn nhất
giúp mình với ạ ! Mình cảm ơn nhiều :3
Xét \(\Delta=\text{}\)\(\left(-4m\right)^2-4\left(3m^2-3\right)\)\(=4m^2+12>0\forall m\)
=> Pt luôn có hai nghiệm pb
Theo viet \(\left\{{}\begin{matrix}x_1+x_2=4m\\x_1x_2=3m^2-3\end{matrix}\right.\)
\(P=\dfrac{2019}{\left|x_1-x_2\right|}\)\(\Leftrightarrow P^2=\dfrac{2019^2}{\left(x_1-x_2\right)^2}\)\(=\dfrac{2019^2}{\left(x_1+x_2\right)^2-4x_1x_2}\)\(=\dfrac{2019^2}{16m^2-4\left(3m^2-3\right)}\)
\(=\dfrac{2019^2}{4m^2+12}\le\dfrac{2019^2}{12}\)
\(\Rightarrow P\le\dfrac{2019}{\sqrt{12}}\)
\(\Rightarrow P_{max}=\dfrac{2019\sqrt{12}}{12}\Leftrightarrow m=0\)
Vậy m=0
Tìm giá trị lớn nhất của biểu thức M=\(2019\left(x-2y\right)^{2018}-\left(6y-3x\right)^{2018}-|xy-2|\)
\(M=2019\left(x-2y\right)^{2018}-\left(6y-3y\right)^{2018}-\left|xy-2\right|\\ \)
\(Do\left(x-2y\right)^{2018}\ge0\Rightarrow2019\left(x-2y\right)^{2019}\)
\(\left(6y-3x\right)^{2018}\ge0\Rightarrow-\left(6y-3x\right)^{2018}\le0\)
\(\left|xy-2\right|\ge0\Rightarrow-\left|xy-2\right|\le0\)=>\(M\le0-0-0=0.\)
GIá tri lon nhat cua Mla 0 khi va chi khi
\(\hept{\begin{cases}x-2y=0\\6y-3x=0\\xy-2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=2y\\6y=3x\\xy=2\end{cases}\Rightarrow\hept{\begin{cases}x=2y\\y=\frac{1}{2}x\\xy=2\end{cases}}}\)
\(\Rightarrow xy=2y.y=2y^2\Rightarrow y^2=1\Rightarrow y=\pm1\Rightarrow x=\pm2\)
vay ..........
Tìm giá trị nhỏ nhất của biểu thức C=\(\dfrac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)
\(C=\dfrac{\left|X-2017\right|+2018}{\left|X-2017\right|+2019}=\dfrac{\left(\left|X-2017\right|+2019\right)-1}{\left|X-2017\right|+2019}=1-\dfrac{1}{\left|X-2017\right|+2019}\)
\(\text{Biểu thức C đạt giá trị nhỏ nhất khi }\left|x-2017\right|+2019\text{ có giá trị nhỏ nhất}\)
\(\text{Mà }\left|x-2017\right|\ge0\text{ nên }\left|x-2017\right|+2019\ge2019\)
\(\text{Dấu "=" xảy ra khi }x=2017\Rightarrow C=\dfrac{2018}{2019}\)
\(\text{Vậy giá trị nhỏ nhất của C là }\dfrac{2018}{2019}\text{ khi }x=2017\)
Tìm giá trị nhỏ nhất của biểu thức sau
\(H=2019-\left|x-y\right|^{2018}-\left|2x+1\right|-\left|4x+2\right|\)
giúp mink vs nha
Giá trị lớn nhất chứ bn , bn xem lại đề hộ mình
Tìm giá trị lớn nhất của N=
\(\dfrac{-2\left|x-2018\right|-2021}{2020+\left|x-2018\right|}\)
Tìm các giá trị của x,y thỏa mãn:\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)
Giúp tớ với các cậu ơi. Năn nỉ đó, mai tớ phải nộp cho thầy rồi.
Tìm số dương x để biểu thức H=\(\dfrac{x}{\left(x+2018\right)^2}\) đạt giá trị lớn nhất. Tính giá trị lớn nhất đó.
Để H lớn nhất thì \(\frac{1}{H}=\frac{\left(x+2018\right)^2}{x}\) nhỏ nhất.
Ta có: \(\frac{1}{H}=\frac{x^2+2.x.2018+2018^2}{x}=x+4036+\frac{2018^2}{x}\)
\(\frac{x+\frac{2018^2}{x}}{2}\ge\sqrt{x.\frac{2018^2}{x}}=2018\) (áp dụng bất đẳng thức cosi) \(\Rightarrow x+\frac{2018^2}{x}\ge4036\)
\(\frac{1}{A}\ge4036+4036=8072\Rightarrow A\le\frac{1}{8072}\)
Dấu "=" xảy ra khi: \(x=\frac{2018^2}{x}\Rightarrow x^2=2018^2\Rightarrow x=2018\left(x>0\right)\)
Vậy GTLN của H là \(\frac{1}{8072}\Leftrightarrow x=2018\)
Tìm giá trị lớn nhất của:
a. \(\dfrac{x}{x^2+2}\)
b.\(\dfrac{x^2}{\left(x^2+2\right)^3}\)
GIÚP MÌNH VỚI Ạ!
b) Áp dụng bất đẳng thức AM - GM:
\(\left(x^2+2\right)^3=\left(x^2+1+1\right)^3\ge27x^2\)
\(\Rightarrow\dfrac{x^2}{\left(x^2+2\right)^3}\le\dfrac{x^2}{27x^2}=\dfrac{1}{27}\).
Đẳng thức xảy ra khi \(x=\pm1\).
Vậy...
a, x2 + 2 ≥ 2x\(\sqrt{2}\)
⇒ \(\dfrac{x}{x^2+2}\le\dfrac{1}{2\sqrt{2}}=\dfrac{\sqrt{2}}{4}\) (DBXR khi x = \(\sqrt{2}\))
Tương tự trên
\(A=\dfrac{\left(x+2\right)^2}{x};B=x\left(x+2\right)+\dfrac{x^2+6x+4}{x}\) với x ≠ 0
a. Tính giá trị của biểu thức A biết x > 0 ; \(x^2=3-2\sqrt{2}\)
b. Rút gọn biểu thức \(M=A-B\)
c.Tìm x để biểu thức M đạt giá trị lớn nhất .Tìm giá trị lớn nhất đó ?
a: Ta có: \(x^2=3-2\sqrt{2}\)
nên \(x=\sqrt{2}-1\)
Thay \(x=\sqrt{2}-1\) vào A, ta được:
\(A=\dfrac{\left(\sqrt{2}+1\right)^2}{\sqrt{2}-1}=\dfrac{3+2\sqrt{2}}{\sqrt{2}-1}=7+5\sqrt{2}\)