Cho \(\Delta ABC\) vuông tại A, đường cao AH, đường trung tuyến AM. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. C/minh:
\(a,DE=AH\)
\(b,AM\perp DE\)
\(c,\Delta ABC\) cần thêm điều kiện gì thì AM = DE?
Cho \(\Delta ABC\) vuông tại A, đường cao AH, đường trung tuyến AM. Gọi D và E lần lượt là hình chiếu của H trên AB và AC. C/minh:
\(a,DE=AH\)
\(b,AM\perp DE\)
\(c,\Delta ABC\) cần thêm điều kiện gì thì AM = DE?
Cho \(\Delta ABC\)vuông tại A, đường cao AH, đường trung tuyến AM. Gọi D, E theo thứ tự là hình chiếu của H trên AB, AC.
a/ CMR: AD.AB = AE.AC
b/ CMR: AM \(\perp\)DE
c/ \(\Delta ABC\)phải có thêm điều kiện gì để \(S_{AEHD}=\frac{1}{2}S_{ABC}\)?
Cho tam giác ABC vuông tại A,đường cao AH và trung tuyến AM .Gọi D,E lần lượt là hình chiếu của H trên AB,AC.Chứng minh: a)DE²=BH×CH. b)DE vuông góc AM. Mong mọi giúp ạ em đang cần gấp!
a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>DE=AH
=>\(DE^2=BH\cdot CH\)
b: Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC
=>góc AED+góc MAC=90 độ
=>AM vuông góc với DE
Cho tam giác ABC vuông tại A, đường cao AH, trung tuyến AM, qua H kẻ đường thẳng song song với AB cắt AC tại D. Qua H kẻ đường thẳng song song với AC cắt AB tại E.
a) CM: AH=DE
b) Cm: \(AM\perp DE\)
c) \(\Delta ABC\) cần có thêm điều kiện gì để tứ giác AEHD là hình
Cm: a) Ta có: BA \(\perp\)AC (gt)
HD // AB (gt)
=> HD \(\perp\)AC => \(\widehat{HDA}=90^0\)
Ta lại có: AC \(\perp\)AB (gt)
HE // AC (gt)
=> HE \(\perp\)AB => \(\widehat{HEA}=90^0\)
Xét tứ giác AEHD có: \(\widehat{A}=\widehat{AEH}=\widehat{HDA}=90^0\)
=> AEHD là HCN => AH = DE
b) Gọi O là giao điểm của AH và DE
Ta có: AEHD là HCN => OE = OH = OD = OA
=> t/giác OAD cân tại O => \(\widehat{OAD}=\widehat{ODA}\) (1)
Xét t/giác ABC vuông tại A có AM là đường trung tuyến
-> AM = BM = MC = 1/2 BC
=> t/giác AMC cân tại M => \(\widehat{MAC}=\widehat{C}\)
Ta có: \(\widehat{B}+\widehat{C}=90^0\) (phụ nhau)
\(\widehat{C}+\widehat{HAC}=90^0\) (phụ nhau)
=> \(\widehat{B}=\widehat{HAC}\) hay \(\widehat{B}=\widehat{OAD}\) (2)
Từ (1) và (2) => \(\widehat{ODA}=\widehat{B}\)
Gọi I là giao điểm của MA và ED
Xét t/giác IAD có: \(\widehat{IAD}+\widehat{IDA}+\widehat{AID}=180^0\) (tổng 3 góc của 1 t/giác)
=> \(\widehat{AID}=180^0-\left(IAD+\widehat{IDA}\right)\)
hay \(\widehat{AID}=180^0-\left(\widehat{B}+\widehat{C}\right)=180^0-90^0=90^0\)
=> \(AM\perp DE\)(Đpcm)
c) (thiếu đề)
Tam giác ABC vuông tại A có AH; AM là đường cao và trung tuyến; gọi D và E lần lượt là hình chiếu của H trên AB và AC chứng minh rằng: AM vuông góc với DE
Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>góc AED=góc AHD=góc ABC
Ta có: ΔABC vuông tại A
mà AM là đường trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
=>góc MAC+góc AED=90 độ
=>AM vuông góc với DE
cho tam giác ABC vuông tại A đường cao AH ,trung tuyến AM . Gọi D và E lần lượt là hình chiếu của H trên AB và AC.
a)chứng minh ADHE là hình chữ nhật.
b.chứng minh AM vuông góc DE
c.biết AB=6cm,AC=8cm.tính DE? d.Gọi N là giao điểm của AM và HE.K là hình chiếu của điểm M trên AB.CMR: MK,BN,AH đồng quy
mọi người giúp tớ với hic:<
a: Xét tứ giác ADHE có góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
=>DE=AH
=>\(DE^2=BH\cdot CH\)
b: Ta có: ΔABC vuông tại A
mà AM là trung tuyến
nên MA=MC
=>ΔMAC cân tại M
=>góc MAC=góc MCA
Vì ADHE là hình chữ nhật nên góc AED=góc AHD=góc ABC
=>góc AED+góc MAC=90 độ
=>AM vuông góc với DE
c: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
\(DE=AH=\dfrac{AB\cdot AC}{CB}=4.8\left(cm\right)\)
Cho tam giác ABC vuông tại A, kẻ đường trung tuyến AM và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC.
a) Chứng minh AD . AB = AE . AC
b) AM vuông góc DE
c) Tam giác ABC có điều kiện gì để diện tích ΔABC = 2 lần diện tích AEHD
Cho tam giác ABC vuông tại A. Đường cao AH và trung tuyến AM. Gọi D và E là hình chiếu của H trên AB và AC.
a) CMR : AD.AB = AE.AC
b) CMR AM vuông góc DE
c) \(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)
d) Tam giác ABC cần thêm điều kiện gì để diện tích của AEHD = 1/2 diện tích ABC