đường thẳng denta tạo với đường thẳng d có pt : x+2y-6=0, 1 góc 45 độ. Tìm hệ số góc k của denta
viết phương trình đường thẳng d đi qua A(1,1) và tạo với đường thẳng denta: -x+5y-7 =0 một góc 45 độ
Lời giải:
Gọi PTĐT $(d)$ có dạng $ax+by+c=0$
Vì $A\in (d)$ nên $a.1+b.1+c=a+b+c=0(1)$
VTPT của $(d)$ là $(a,b)$. VTPT của $(\Delta)$ là $(-1,5)$
Góc giữa $(d)$ và $(\Delta)$:
\(\cos 45^0=\frac{|-a+5b|}{\sqrt{(-1)^2+5^2}.\sqrt{a^2+b^2}}=\frac{|-a+5b|}{\sqrt{26(a^2+b^2)}}=\frac{\sqrt{2}}{2}\)
$\Rightarrow 12a^2=12b^2-10ab$
$\Leftrightarrow 6a^2-6b^2+5ab=0$
$\Leftrightarrow (3a-2b)(2a+3b)=0$
$\Rightarrow 3a=2b$ hoặc $2a+3b=0$
Nếu $a=\frac{2}{3}b$ thì:
$ax+by+c=\frac{2}{3}bx+by+(-a-b)=\frac{2}{3}bx+by-\frac{5}{3}b=0$
$\Leftrightarrow \frac{2}{3}x+y-\frac{5}{3}=0$
$\Leftrightarrow 2x+3y-5=0$
Đây là 1 PT cần tìm
TH $a=\frac{-3b}{2}$ làm tương tự.
cho điểm m (-1 1) và đường thẳng denta 3x+y-8=0
a)Viết phương trình đường thẳng d đi qua m vuông góc với đường thẳng denta
b)Tìm tọa độ hình chiếu vuông góc với h của điểm M lên đường thẳng delta
c)tọa độ điểm M' đối xứng với điểm M Qua denta
a.
Do d vuông góc với \(\Delta\) nên d nhận \(\left(1;-3\right)\) là 1 vtpt
Phương trình d:
\(1\left(x+1\right)-3\left(y-1\right)=0\Leftrightarrow x-3y+4=0\)
b.
\(M\in d\) mà \(MH\perp\Delta\Rightarrow\) H là giao điểm của d và \(\Delta\)
Tọa độ H là nghiệm của hệ:
\(\left\{{}\begin{matrix}x-3y+4=0\\3x+y-8=0\end{matrix}\right.\) \(\Rightarrow H\left(2;2\right)\)
c.
M' đối xứng với M qua \(\Delta\) khi và chỉ khi H là trung điểm MM'
Theo công thức trung điểm:
\(\left\{{}\begin{matrix}x_{M'}=2x_H-x_M=5\\y_{M'}=2y_H-y_M=3\end{matrix}\right.\) \(\Rightarrow M'\left(5;3\right)\)
Tại sao lại đổi từ (3; 1) sang (1; -3 ) vậy ạ? Denlta có dạng pttq thì có vtpt và đường thẳng d cũng vuông góc với denlta rồi mà?
1. Cho hàm số y = x^3 -3x^2 +2x +2 có đồ thị (C). Viết pt tiếp tuyến denta của (C) biết rằng denta vuông góc với đg thẳng d : x -y -3=0
\(y=x^3-3x^2+2x+2\Rightarrow y'=3x^2-6x+2\)
Vi \(\Delta\perp d:y=x-3\Rightarrow y'=-1\Leftrightarrow3x^2-6x+2=-1\)
\(\Rightarrow x=1\Rightarrow y=1-3+2+2=2\)
\(\Rightarrow\Delta:y=-1\left(x-1\right)+2\)
Bài 1: Trong htđ Oxy cho đường thẳng d : 3x-y+4 = 0 và đường thẳng denta : x+2y-5=0 .
Điểm A ( -2; 3).
1) Hãy tìm tọa độ điểm H là hình chiếu của A trên d.
2) tìm tọa độ A’ là điểm đối xứng với A qua d.
3) Viết phương trình đường thẳng đối xứng với đường thẳng d qua đường thẳng denta
4) Viết phuong trình đường thẳng đôi xứng với d qua A ( 3 dạng PT).
5) Tìm tọa độ điểm N trên d sao cho ON nhỏ nhất.
P/S : GIÚP MK VS Ạ. MK CẦN LẮM Ạ. GIẢI CHI TIẾT GIÚP MK VS Ạ. THANKS NHÌU NHÌU Ạ
1. Gọi d' là đường thẳng qua A và vuông góc d
\(\Rightarrow\) d' nhận (1;3) là 1 vtpt
Phương trình d':
\(1\left(x+2\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-4=0\)
H là giao điểm d và d' nên tọa độ thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+4=0\\x+3y-4=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{4}{5}\\y=\dfrac{8}{5}\end{matrix}\right.\)
\(\Rightarrow H\left(-\dfrac{4}{5};\dfrac{8}{5}\right)\)
2.
Do A' đối xứng A qua d nên H là trung điểm AA'
\(\Rightarrow\left\{{}\begin{matrix}x_{A'}=2x_H-x_A=\dfrac{2}{5}\\y_{A'}=2y_H-y_A=\dfrac{1}{5}\end{matrix}\right.\)
\(\Rightarrow A'\left(\dfrac{2}{5};\dfrac{1}{5}\right)\)
3.
Gọi B là giao điểm d và \(\Delta\) thì tọa độ B thỏa mãn:
\(\left\{{}\begin{matrix}3x-y+4=0\\x+2y-5=0\end{matrix}\right.\) \(\Rightarrow B\left(-\dfrac{3}{7};\dfrac{19}{7}\right)\)
Lấy điểm \(C\left(0;4\right)\) thuộc d
Phương trình đường thẳng \(d_1\) qua C và vuông góc \(\Delta\) có dạng:
\(2\left(x-0\right)-\left(y-4\right)=0\Leftrightarrow2x-y+4=0\)
Gọi D là giao điểm \(\Delta\) và \(d_1\Rightarrow\left\{{}\begin{matrix}x+2y-5=0\\2x-y+4=0\end{matrix}\right.\) \(\Rightarrow D\left(-\dfrac{3}{5};\dfrac{14}{5}\right)\)
Gọi D' là điểm đối xứng C qua \(\Delta\Rightarrow\) D là trung điểm CD'
\(\Rightarrow\left\{{}\begin{matrix}x_{D'}=2x_D-x_C=-\dfrac{6}{5}\\y_{D'}=2y_D-y_C=\dfrac{8}{5}\end{matrix}\right.\) \(\Rightarrow\overrightarrow{BD'}=\left(-\dfrac{27}{35};-\dfrac{39}{35}\right)=-\dfrac{3}{35}\left(9;13\right)\)
Phương trình đường thẳng đối xứng d qua denta (nhận \(\left(9;13\right)\) là 1 vtcp và đi qua D':
\(\left\{{}\begin{matrix}x=-\dfrac{6}{5}+9t\\y=\dfrac{8}{5}+13t\end{matrix}\right.\)
4.
Gọi \(d_1\) là đường thẳng đối xứng với d qua A
\(\Rightarrow d_1||d\Rightarrow d_1\) có dạng: \(3x-y+c=0\)
Do A cách đều d và \(d_1\) nên:
\(d\left(A;d\right)=d\left(A;d_1\right)\)
\(\Leftrightarrow\dfrac{\left|3.\left(-2\right)-3+4\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{\left|3.\left(-2\right)-3+c\right|}{\sqrt{3^2+\left(-1\right)^2}}\)
\(\Leftrightarrow\left|c-9\right|=5\Rightarrow\left[{}\begin{matrix}c=4\left(loại\right)\\c=14\end{matrix}\right.\)
Vậy pt \(d_1\) có dạng: \(3x-y+14=0\)
Em tự chuyển sang 2 dạng còn lại
Trong mặt phẳng hệ tọa độ oxy, cho đường tròn (C):(x-2)2+(y-3)2=100 và đường thẳng denta:3x-4y+1=0.Gọi A,B là hai giao điểm của denta và(C).Tính độ dài đoạn thẳng AB
Đường tròn (C) tâm \(O\left(2;3\right)\) bán kính \(R=10\)
Gọi I là trung điểm AB \(\Rightarrow IO\perp AB\)
\(\Rightarrow IO=d\left(O;AB\right)=\dfrac{\left|3.2-4.3+1\right|}{\sqrt{3^2+4^2}}=1\)
Áp dụng định lý Pitago:
\(IA=\sqrt{OA^2-OA^2}=\sqrt{100-1}=3\sqrt{11}\)
\(\Rightarrow AB=2IA=6\sqrt{11}\)
1.Tìm pt các cạnh(mình đã giải ra) và đường trung trực của tam giác ABC biết tọa độ trung điểm ba cạnh là (2;1), (5;3),(3;-4).
2.cho denta:(m-1)x+2y+1=0 và d:2x+(m-1)y+3=0. Tìm m để hai đường thẳng trên song song
3.cho denta(1):mx+y+q=0 và denta(2):x-y+m=0. Với giá trị nào của m thì hai đường thẳng trên vuông góc?
1.
\(\overrightarrow{AB}=\left(3;2\right);\overrightarrow{AC}=\left(1;-5\right);\overrightarrow{CB}=\left(2;7\right)\)
Gọi M, N, P lần lượt là trung điểm AB; AC; BC
\(\Rightarrow M\left(\frac{7}{2};2\right);N\left(\frac{5}{2};-\frac{3}{2}\right);P\left(4;-\frac{1}{2}\right)\)
Trung trực AB vuông góc AB và đi qua M nên nhận \(\left(3;2\right)\) là 1 vtpt
Phương trình: \(3\left(x-\frac{7}{2}\right)+2\left(y-2\right)=0\Leftrightarrow3x+2y-\frac{29}{2}=0\)
Trung trực AC vuông góc AC và đi qua N nên có pt:
\(1\left(x-\frac{5}{2}\right)-5\left(y+\frac{3}{2}\right)=0\Leftrightarrow...\)
Trung trực BC vuông góc BC và đi qua P:
\(2\left(x-4\right)+7\left(y+\frac{1}{2}\right)=0\Leftrightarrow...\)
2.
Denta và d lần lượt nhận \(\left(m-1;2\right)\) và \(\left(2;m-1\right)\) là vtpt
Để denta và d song song
\(\Leftrightarrow\left(m-1\right)\left(m-1\right)=2.2\) (nghĩa là \(ad=bc\) ấy)
\(\Leftrightarrow\left(m-1\right)^2=4\Rightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)
3.
D1 và d2 lần lượt nhận \(\left(m;1\right)\) và \(\left(1;-1\right)\) là các vtpt
Để d1 vuông góc d2
\(\Leftrightarrow m.1+1\left(-1\right)=0\) (tích vô hướng 2 vtpt bằng 0)
\(\Leftrightarrow m=1\)
trong mặt phẳng oxy, cho đường thẳng denta : ax+by +c=0 (a,b,c thuộc N, a<= 4) vuông góc với đường thẳng d : 3x-y+4 = 0 và denta cách A(1;2) một khoảng căn 10
xác định T = a+b+c
Viết pt đường trong có tâm thuộc đường thẳng:4x+3y-2=0 và tiếp xúc với denta 1:x+y+4=0, denta 2:7x-y+4=0
Gọi tâm đường tròn là \(I\left(a;b\right)\Rightarrow4a+3b-2=0\) (1)
Do \(\left(I\right)\) tiếp xúc với cả \(d_1\) và \(d_2\Rightarrow d\left(I;d_1\right)=d\left(I;d_2\right)\)
\(\Rightarrow\frac{\left|a+b+4\right|}{\sqrt{1^2+1^2}}=\frac{\left|7a-b+4\right|}{\sqrt{7^2+\left(-1\right)^2}}\Rightarrow\sqrt{50}\left|a+b+4\right|=\sqrt{2}\left|7a-b+4\right|\)
\(\Rightarrow5\left|a+b+4\right|=\left|7a-b+4\right|\)
\(\Rightarrow\left[{}\begin{matrix}5\left(a+b+4\right)=7a-b+4\\5\left(a+b+4\right)=-7a+b-4\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}a-3b-8=0\\3a+b+6=0\end{matrix}\right.\)
TH1: \(a-3b-8=0\) kết hợp với (1) ta được hệ:
\(\left\{{}\begin{matrix}4a+3b-2=0\\a-3b-8=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-2\end{matrix}\right.\) \(\Rightarrow I\left(2;-2\right)\)
\(\Rightarrow R^2=\frac{\left(a+b+4\right)^2}{\left(1^2+1^2\right)}=8\Rightarrow\) pt đường tròn: \(\left(x-2\right)^2+\left(y+2\right)^2=8\)
TH2: \(3a+b+6=0\) kết hợp (1) được hệ:
\(\left\{{}\begin{matrix}3a+b+6=0\\4a+3b-2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-4\\b=6\end{matrix}\right.\) \(\Rightarrow I\left(-4;6\right)\)
\(\Rightarrow R^2=\frac{\left(a+b+4\right)^2}{1^2+1^2}=18\) \(\Rightarrow\) pt đường tròn: \(\left(x+4\right)^2+\left(y-6\right)^2=18\)
trong mặt phẳng với hệ tọa độ oxy, cho đường tròn (C): x^2+y^2-2x-2y-2=0 và đường thẳng d: 3x-4y-4=0. Tìm phương trình đường thẳng denta song song với d cắt (C) tại 2 điểm A, B sao cho độ dài đoạn AB= 2căn3
(C) có tâm \(I\left(1;1\right)\) bán kính \(R=2\)
\(\Delta//d\Rightarrow\) phương trình \(\Delta\) có dạng: \(3x-4y+c=0\)
Áp dụng định lý Pitago: \(d\left(I;\Delta\right)=\sqrt{R^2-\left(\frac{AB}{2}\right)^2}=1\)
\(\Rightarrow\frac{\left|3.1-4.1+c\right|}{\sqrt{3^2+4^2}}=1\Leftrightarrow\left|c-1\right|=5\Rightarrow\left[{}\begin{matrix}c=6\\c=-4\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn: \(\left[{}\begin{matrix}3x-4y+6=0\\3x-4y-4=0\end{matrix}\right.\)