Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Van Hung
Xem chi tiết
Thắng Nguyễn
19 tháng 5 2018 lúc 14:03

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(VT=\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-xz}+\frac{2z^2+x^2+y^2}{4-xy}\)

\(\ge\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\)

Cần chứng minh \(\frac{4x\sqrt{yz}}{4-yz}+\frac{4y\sqrt{xz}}{4-xz}+\frac{4z\sqrt{xy}}{4-xy}\ge4xyz\)

\(\Leftrightarrow\frac{\sqrt{yz}}{yz\left(4-yz\right)}+\frac{\sqrt{xz}}{xz\left(4-xz\right)}+\frac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)

Cauchy-Schwarz: \(\left(x+y+z\right)^2\ge\left(1+1+1\right)\left(xy+yz+xz\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)^2\)

\(\Leftrightarrow3\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)

Đặt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{xz}\right)\rightarrow\left(a;b;c\right)\)\(\Rightarrow\hept{\begin{cases}a,b,c>0\\a+b+c\le3\end{cases}}\)

\(\Leftrightarrow\frac{a}{a^2\left(4-a^2\right)}+\frac{b}{b^2\left(4-b^2\right)}+\frac{c}{c\left(4-c^2\right)}\ge1\left(\odot\right)\)

Ta có BĐT phụ: \(\dfrac{a}{a^2\left(4-a^2\right)}\le-\dfrac{1}{9}a+\dfrac{4}{9}\)

\(\Leftrightarrow\dfrac{\left(a-1\right)^2\left(a^2-2a-9\right)}{9a\left(a-2\right)\left(a+2\right)}\le0\forall0< a\le1\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế

\(VT_{\left(\odot\right)}\ge\dfrac{-\left(a+b+c\right)}{9}+\dfrac{4}{9}\cdot3\ge\dfrac{-3}{9}+\dfrac{12}{9}=1=VP_{\left(\odot\right)}\)

Dấu "=" <=> x=y=z=1

Đặng Thái Dương
23 tháng 4 2020 lúc 15:33

em là pô pô nê người con của Thái Nguyên

Khách vãng lai đã xóa
Tran Le Khanh Linh
23 tháng 4 2020 lúc 19:12

Bài này có nhiều cách làm. Cách khác:

Gọi vế trái của BĐT là P. Khi đó biến đổi P như sau:

\(P=\left(\frac{x^2}{4-yz}+\frac{y^2}{4-xz}+\frac{z^2}{4-yx}\right)+\left(x^2+y^2+z^2\right)\left(\frac{1}{4-yz}+\frac{1}{4-xz}+\frac{1}{4-yx}\right)\)

Theo BĐT Bunhiacopsky dạng phân thức ta có:

\(\frac{x^2}{4-yz}+\frac{y^2}{4-xz}+\frac{z^2}{4-yx}\ge\frac{\left(x+y+z\right)^2}{12-\left(xy+yz+zx\right)}\)

\(\frac{1}{4-yz}+\frac{1}{4-xz}+\frac{1}{4-yx}\ge\frac{9}{12-\left(xy+yz+zx\right)}\)

Do đó ta được:

\(P\ge\frac{\left(x+y+z\right)^2}{12-\left(xy+yz+xz\right)}+\frac{9\left(x^2+y^2+z^2\right)}{12-\left(xy+yz+xz\right)}\)

\(\ge\frac{3\left(xy+yz+xz\right)}{12-\left(xy+yz+xz\right)}+\frac{9\left(xy+yz+xz\right)}{12-\left(xy+yz+xz\right)}\)

\(\ge\frac{12\left(xy+yz+xz\right)}{12-\left(xy+yz+zx\right)}\ge\frac{36\sqrt[3]{x^2y^2z^2}}{12-3\sqrt[3]{x^2y^2z^2}}\)

đặt \(\sqrt[3]{xyz}=t\le\frac{x+y+z}{3}=1\). Khi đó ta có:

\(\frac{36t^2}{12-3t^2}-4t^3\Leftrightarrow12t^2\left(t-1\right)\left(t^2+t-3\right)\ge0\)

Đánh giá BĐT cuối cùng luôn đúng. BĐT được chứng minh xong

Khách vãng lai đã xóa
Trân Vũ
Xem chi tiết
dam thu a
Xem chi tiết
Lê Tuấn Anh
7 tháng 3 2021 lúc 17:12

toán lớp mấy v 

1hay 23456789

Khách vãng lai đã xóa
WANNA ONE
Xem chi tiết
Ngocmai
Xem chi tiết
kikyou
Xem chi tiết
Nguyen Phuong My
22 tháng 5 2020 lúc 17:59

ko lam thi thoi chui cl ay!!!

Khách vãng lai đã xóa
Trần Anh Thư
22 tháng 5 2020 lúc 18:03

đù , chuyện giề đang xảy ra vậy man

Khách vãng lai đã xóa
Johny Jack
22 tháng 5 2020 lúc 18:16

bọn bay ngáo quá rùi  hút cần à chửi tục hơn thánh mé chửi nữa cho phai nick hét bây giờ ,ko tao số má lun 

Khách vãng lai đã xóa
Trần Minh Phương
Xem chi tiết
Mr Lazy
8 tháng 8 2016 lúc 22:06

+\(x+y+z\le\sqrt{3\left(x^2+y^2+z^2\right)}=3\)

+\(3+2\left(xy+yz+zx\right)=x^2+y^2+z^2+2\left(xy+yz+zx\right)=\left(x+y+z\right)^2\le9\)

\(\Rightarrow B=\frac{1}{1+\sqrt{3+2\left(xy+yz+zx\right)}}\ge\frac{1}{1+3}=\frac{1}{4}\)

+\(A=\frac{x^2}{y+2z}+\frac{y^2}{z+2x}+\frac{z^2}{x+2y}=\frac{x^4}{x^2y+2zx^2}+\frac{y^4}{y^2z+2xy^2}+\frac{z^4}{z^2x+2yz^2}\)

\(\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2y+y^2z+z^2x+2\left(xy^2+yz^2+zx^2\right)}\)

Áp dụng bđt Bunhiacopxki

\(x^2y+y^2z+z^2x=x.xy+y.yz+z.zx\le\sqrt{x^2+y^2+z^2}.\sqrt{x^2y^2+y^2z^2+z^2x^2}\)

\(\le\sqrt{x^2+y^2+z^2}.\sqrt{\frac{\left(x^2+y^2+z^2\right)^2}{3}}=3\)

(áp dụng \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}\))

Tương tự: \(xy^2+yz^2+zx^2\le3\)

\(\Rightarrow B\ge\frac{3^2}{3+2.3}=1\)

\(VT=A+B\ge1+\frac{1}{4}=\frac{5}{4}=VP\)

Cool Boy
8 tháng 8 2016 lúc 21:56

dvdfhfeye5

Pham Quoc Cuong
Xem chi tiết
Chàng trai bóng đêm
14 tháng 5 2018 lúc 22:42

Ta có: \(\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\)

Áp dụng BĐT Cauchy Schwarz, ta có:

\(=\frac{x^4}{xy+2xz}+\frac{y^4}{yz+2yx}+\frac{z^4}{zx+2zy}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\frac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\frac{1}{3}\)

=> ĐPCM

Dấu "=" xảy ra khi: \(x=y=z=\frac{1}{\sqrt{3}}\)

Tran Le Khanh Linh
13 tháng 5 2020 lúc 5:11

Áp dụng BĐT Cosi cho 2 số dương, ta có:

\(\frac{9x^3}{y+2z}+x\left(y+2z\right)\ge6x^2;\frac{9y^3}{z+2x}+y\left(z+2x\right)\ge6y^2;\frac{9z^3}{x+2y}+z\left(x+2y\right)\ge6z^3\)

Lại có \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\Rightarrow x^2+y^2+z^2\ge xy+yz+zx\)

Do đó \(\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}+3\left(xy+yz+zx\right)\ge6\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{9x^3}{y+2z}+\frac{9y^3}{z+2x}+\frac{9z^3}{x+2y}\ge6\left(x^2+y^2+z^2\right)-3\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)\)

\(\Leftrightarrow\frac{x^3}{y+2z}+\frac{y^3}{z+2x}+\frac{z^3}{x+2y}\ge\frac{x^2+y^2+z^2}{3}=\frac{1}{3}\)

Dấu "=" xảy ra <=> \(x=y=z=\frac{1}{\sqrt{3}}\)

Khách vãng lai đã xóa
Nguyễn Nguyên Quỳnh Như
Xem chi tiết
Nguyễn Huy Tú
30 tháng 1 2017 lúc 19:37

Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{\left(2x+3y-z\right)-\left(2+6-3\right)}{9}=\frac{50-5}{9}=5\)

+) \(\frac{x-1}{2}=5\Rightarrow x=11\)

+) \(\frac{y-2}{3}=5\Rightarrow y=17\)

+) \(\frac{z-3}{4}=5\Rightarrow z=23\)

\(\Rightarrow x+y+z=11+17+23=51\)

Vậy \(x+y+z=51\)

nguyen thi hai yen
Xem chi tiết