Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phượng Hoàng
Xem chi tiết
Mạnh Dũng
Xem chi tiết
Akai Haruma
17 tháng 11 2021 lúc 23:43

Lời giải:
Đặt $t=\frac{2x}{x^2+1}$

$t+1=\frac{(x+1)^2}{x^2+1}\geq 0\Rightarrow t\geq -1$

$1-t=\frac{(x-1)^2}{x^2+1}\geq 0\Rightarrow t\leq 1$

Vậy $-1\leq t\leq 1$

$y=t^2-4t+25=(t+1)(t-5)+30$

Vì $-1\leq t\leq 1$ nên $t+1\geq 0; t-5\leq 0\Rightarrow (t+1)(t-5)\leq 0$

$\Rightarrow y\leq 30$

Vậy $y_{\max}=30$

Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2021 lúc 18:36

Xét \(g\left(x\right)=\dfrac{2x^2+x-1}{x^2-x+1}\)

\(g\left(x\right)=\dfrac{3x^2-\left(x^2-x+1\right)}{x^2-x+1}=\dfrac{3x^2}{x^2-x+1}-1\ge-1\)

\(g\left(x\right)=\dfrac{3\left(x^2-x+1\right)-x^2+4x-4}{x^2-x+1}=3-\dfrac{\left(x-2\right)^2}{x^2-x+1}\le3\)

\(\Rightarrow-1\le g\left(x\right)\le3\Rightarrow0\le\left|g\left(x\right)\right|\le3\)

\(\Rightarrow y_{max}=3\) khi \(x=2\)

Pham Tien Dat
Xem chi tiết
vũ linh
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
24 tháng 6 2021 lúc 19:12

a) đk: x\(\ge0\);

P = \(\left[\dfrac{x+2}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}-\dfrac{1}{\sqrt{x}+1}\right].\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}\)

\(\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}.\dfrac{4\sqrt{x}}{3}=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b) Để P = \(\dfrac{8}{9}\)

<=> \(\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)

<=> \(\dfrac{\sqrt{x}}{x-\sqrt{x}+1}=\dfrac{2}{3}\)

<=> \(\dfrac{3\sqrt{x}-2x+2\sqrt{x}-2}{3\left(x-\sqrt{x}+1\right)}=0\)

<=> \(-2x+5\sqrt{x}-2=0\)

<=> \(\left(\sqrt{x}-2\right)\left(2\sqrt{x}-1\right)=0\)

<=> \(\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{1}{4}\left(tm\right)\end{matrix}\right.\)

c)

Đặt \(\sqrt{x}=a\) (\(a\ge0\))

P = \(\dfrac{4a}{3\left(a^2-a+1\right)}\)

Xét P + \(\dfrac{4}{9}\) = \(\dfrac{4a}{3a^2-3a+3}+\dfrac{4}{9}=\dfrac{12a+4a^2-4a+4}{9\left(a^2-a+1\right)}=\dfrac{4a^2+8a+4}{9\left(a^2-a+1\right)}=\dfrac{4\left(a+1\right)^2}{9\left(a^2-a+1\right)}\ge0\)

Dấu "=" <=> a = -1 (loại)

=> Không tìm được Min của P

Xét P - \(\dfrac{4}{3}\) = \(\dfrac{4a}{3\left(a^2-a+1\right)}-\dfrac{4}{3}=\dfrac{4a-4a^2+4a-4}{3\left(a^2-a+1\right)}=\dfrac{-4a^2+8a-4}{3\left(a^2-a+1\right)}=\dfrac{-4\left(a-1\right)^2}{3\left(a^2-a+1\right)}\le0\)

<=> \(P\le\dfrac{4}{3}\)

Dấu "=" <=> a = 1 <=> x = 1 (tm)

Nguyễn Lê Phước Thịnh
24 tháng 6 2021 lúc 20:39

a) ĐKXĐ: \(x\ge0\)

Nguyễn Lê Phước Thịnh
24 tháng 6 2021 lúc 20:42

b) Ta có: \(P=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\left(\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right)\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

Ta có: \(P=\dfrac{8}{9}\)

nên \(36\sqrt{x}=27\left(x-\sqrt{x}+1\right)\)

\(\Leftrightarrow27x-27\sqrt{x}+27-36\sqrt{x}=0\)

\(\Leftrightarrow27x-63\sqrt{x}+27=0\)

 

Ngọc Hằng
Xem chi tiết
Hoang Hung Quan
31 tháng 3 2017 lúc 8:48

ĐK: \(x\in Z\)

a) Giải:

Để \(A\) đạt giá trị lớn nhất

\(\Leftrightarrow\dfrac{2002}{\left|x\right|+2002}\) đạt giá trị lớn nhất

\(\Leftrightarrow\left|x\right|+2002\) phải nhỏ nhất \(\Leftrightarrow\left|x\right|=0\)

\(\Rightarrow A_{Max}=\dfrac{2002}{0+2002}=\dfrac{2002}{2002}=1\)

Vậy giá trị lớn nhất của \(A\)\(1\)

b) Để \(B\) đạt giá trị lớn nhất

\(\Leftrightarrow\dfrac{\left|x\right|+2002}{-2003}\) phải lớn nhất

\(\left\{{}\begin{matrix}\left|x\right|+2002>0\\-2003< 0\end{matrix}\right.\)\(\Rightarrow\dfrac{\left|x\right|+2002}{-2003}< 0\)

\(\forall-a< 0\) nếu muốn \(-a\) lớn nhất \(\Leftrightarrow a\) nhỏ nhất

\(\Leftrightarrow\left|x\right|+2002\) phải nhỏ nhất \(\Leftrightarrow\left|x\right|=0\)

\(\Rightarrow B_{Max}=\dfrac{0+2002}{-2003}=\dfrac{2002}{-2003}\)

Vậy giá trị lớn nhất của \(B\)\(\dfrac{2002}{-2003}\)

Ngọc Hằng
30 tháng 3 2017 lúc 20:41

mọi người ơi giúp với ạ khocroi

ChaosKiz
30 tháng 3 2017 lúc 21:27

A) x = 0 A = 1

B) x = 1 hoặc -1 B = -1

Nguyễn Linh Chi
Xem chi tiết
Trần Ái Linh
22 tháng 5 2021 lúc 21:38

ĐK: Biểu thức xác định với mọi `x`.

`y_(min) <=> (\sqrt(2-cos(x-π/6))+3)_(max) <=> (cos(x-π/6))_(max)`

`<=> cos(x-π/6)=1 <=> x-π/6=k2π <=> x = π/6+k2π ( k \in ZZ)`.

`=> y_(min) = 1`

`y_(max) <=> (\sqrt(2-cos(x-π/6))+3)_(min) <=> (cos(x-π/6))_(min)`

`<=> cos(x-π/6)=-1 <=> x -π/6= π+k2π <=> x = (7π)/6+k2π (k \in ZZ)`

`=> y_(max) = (6-2\sqrt3)/3`.

ha:rt the hanoi
Xem chi tiết
Ngô Thành Chung
12 tháng 9 2021 lúc 22:47

1, \(y=2-sin\left(\dfrac{3x}{2}+x\right).cos\left(x+\dfrac{\pi}{2}\right)\)

 \(y=2-\left(-cosx\right).\left(-sinx\right)\)

y = 2 - sinx.cosx

y = \(2-\dfrac{1}{2}sin2x\)

Max = 2 + \(\dfrac{1}{2}\) = 2,5

Min = \(2-\dfrac{1}{2}\) = 1,5

2, y = \(\sqrt{5-\dfrac{1}{2}sin^22x}\)

Min = \(\sqrt{5-\dfrac{1}{2}}=\dfrac{3\sqrt{2}}{2}\)

Max = \(\sqrt{5}\)

Ngô Thành Chung
Xem chi tiết
Akai Haruma
5 tháng 9 2021 lúc 9:13

Lời giải:
\(x\in [-\sqrt{2}; \sqrt{2}]\Rightarrow x^2\leq 2\Rightarrow \sqrt{x^2+1}\leq \sqrt{3}\)

\(y=\frac{x+1}{\sqrt{x^2+1}}\geq \frac{x+1}{\sqrt{3}}\geq \frac{-\sqrt{2}+1}{\sqrt{3}}\)

Vậy $y_{\min}=\frac{-\sqrt{2}+1}{\sqrt{3}}$ khi $x=-\sqrt{2}$

$y^2=\frac{x^2+2x+1}{x^2+1}=1+\frac{2x}{x^2+1}$

$y^2=2+\frac{2x-x^2-1}{x^2+1}=2-\frac{(x-1)^2}{x^2+1}\leq 2$

$\Rightarrow y\leq \sqrt{2}$

Vậy $y_{\max}=\sqrt{2}$ khi $x=1$