4x2-4xy+y2-25a2+10a-136
4x^2 - 4xy + y - 25a^2 + 10a - 136
\(4x^2-4xy+y-25a^2+10a-136\)
\(\text{Phân tích thành nhân tử}\)
\(-\left(4xy-y-4x^2+25a^2-10a+136\right)\)
k nhé !
bai 1 lam tinh chia (8x3-y3)(4x2-y2):(2x+y)(4x2-4xy+y2)
giup minh voi
Bài 1:
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)\cdot\left(2x-y\right)\left(4x^2-4xy+y^2\right)\)
\(=\left(2x-y\right)^4\cdot\left(4x^2+2xy+y^2\right)\)
25-4x2-y2+4xy
4x2-4xy+2x-y+y2
\(4x^2-4xy+2x-y+y^2\\=[(2x)^2-2\cdot 2x\cdot y+y^2]+2x-y\\=(2x-y)^2+(2x-y)\\=(2x-y)(2x-y+1)\)
(2x-y)(4x2-4xy+y2)-8x2(x-y)
\(\left(2x-y\right)\left(4x^2-4xy+y^2\right)-8x^2\left(x-y\right)\)
\(=8x^3-y^3-8x^3+8x^2y\)
\(=8x^2y-y^3\)
a,x3 + 2x
b, 2021x+2021y+x2+xy
c, 49-4x2-4xy-y2
\(a,=x\left(x^2+2\right)\\ b,=2021\left(x+y\right)+x\left(x+y\right)=\left(x+2021\right)\left(x+y\right)\\ c,=49-\left(2x+y\right)^2=\left(7-2x-y\right)\left(7+2x+y\right)\)
a) x3+2x
= x(x2+2)
b) 2021x+2021y+x2+xy
= (2021x+2021y)+(x2+xy)
= 2021(x+y)+x(x+y)
= (2021+x)(x+y)
c) 49-4x2-4xy-y2
= -[(2x)2+2.2x.y+y2] + 72
= -(2x-y)2+72
= 72-(2x-y)2
= (7-2x+y)(7+2x-y)
Phân tích thành nhân tử:
A = (6x - 3y) + (4x2 - 4xy + y2)
B= 9x2 - (y2 - 4y + 4)
C= -25x2 + y2 - 6y + 9
D= x2 - 4x - y2 - 8y -12
\(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)=3\left(2x-y\right)+\left(2x-y\right)^2=\left(2x-y\right)\left(2+2x-y\right)\)
\(B=9x^2-\left(y^2-4y+4\right)=9x^2-\left(y-2\right)^2=\left(3x-y+2\right)\left(3x+y-2\right)\)
\(C=-25x^2+y^2-6y+9=\left(y^2-6y+9\right)-25x^2=\left(y-3\right)^2-\left(5x\right)^2=\left(y-3-5x\right)\left(y-3+5x\right)\)\(D=x^2-4x-y^2-8y-12=\left(x^2-4x+4\right)-\left(y^2+8y+16\right)=\left(x-2\right)^2-\left(y+4\right)^2=\left(x-2-y-4\right)\left(x-2+y+4\right)=\left(x-y-6\right)\left(x+y+2\right)\)
a: Ta có: \(A=\left(6x-3y\right)+\left(4x^2-4xy+y^2\right)\)
\(=3\left(2x-y\right)+\left(2x-y\right)^2\)
\(=\left(2x-y\right)\left(2x-y+3\right)\)
b: Ta có: \(B=9x^2-\left(y^2-4y+4\right)\)
\(=9x^2-\left(y-2\right)^2\)
\(=\left(3x-y+2\right)\left(3x+y-2\right)\)
Thực hiện phép tính :
a) (4x2-5x2-3-3x2+9x) : (x2-3)
b) (4x2+4xy+y2) : (2x+y)
c) (x2-6xy+9y2) : (3y-x)
b) \(\left(4x^2+4xy+y^2\right):\left(2x+y\right)=\dfrac{\left(2x+y\right)^2}{2x+y}=2x+y\)
c) \(\left(x^2-6xy+9y^2\right):\left(3y-x\right)=\dfrac{\left(3y-x\right)^2}{3y-x}=3y-x\)
Phân tích thành nhân tử:
4x2- 4xy + y2 -8x +4y
2x3 - 3x2 + 3x -1
1)\(4x^2-4xy+y^2-8x+4y=\left(4x^2-4xy+y^2\right)-\left(8x-4y\right)=\left(2x-y\right)^2-4\left(2x-y\right)=\left(2x-y\right)\left(2x-y-4\right)\)
2) \(2x^3-3x^2+3x-1=x^2\left(2x-1\right)-x\left(2x-1\right)+\left(2x-1\right)=\left(2x-1\right)\left(x^2-x+1\right)\)