tìm m để pt cho y=/ x^2 -3x +2/ =m có 4 nghiệm pb
Cho pT x3-3x2 -mx-m+4=0
tìm m để PT
a, có 1 nghiệm
b,có 2 nghiệm pb
c, có 3 nghiệm pb
d có 3 nghiệm pb sao cho x12+x22+x32=10
1. Tìm m để pt : \(x^2-\left(2m-3\right)x+m^2-4=0\) có 2 nghiệm pb sao cho tổng bp 2 nghiệm <17
2. Tìm m để pt \(x^4-\left(m+1\right)x^2+m^2-m+2=0\) có 3 nghiệm pb
3. Tìm m để pt \(x^2-6x+m-2=0\) có 2 nghiệm x>0
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
3.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)
\(\Leftrightarrow2< m< 11\)
a, cho pt X2-2x+4/x-2=ms+2-2m tìm m để pt có 2 nghiệm pb
b,cho pt mx2+x+m/x-1=0 tìm m để pt có 2 nghiệm dương pb
1. Tìm \(m\in\left[-10;10\right]\) để pt \(\left(x^2-2x+m\right)^2-2x^2+3x-m=0\) có 4 ng pb
2. Cho biết x1,x2 là nghiệm của pt \(x^2-x+a=0\) và x3,x4 là nghiệm của pt \(x^2-4x+b=0\) . Biết rằng \(\dfrac{x2}{x1}=\dfrac{x3}{x2}=\dfrac{x4}{x3}\), b >0 . Tìm a
1.
Đặt \(x^2-2x+m=t\), phương trình trở thành \(t^2-2t+m=x\)
Ta có hệ \(\left\{{}\begin{matrix}x^2-2x+m=t\\t^2-2t+m=x\end{matrix}\right.\)
\(\Rightarrow\left(x-t\right)\left(x+t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=t\\x=1-t\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=x^2-2x+m\\x=1-x^2+2x-m\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=-x^2+3x\\m=-x^2+x+1\end{matrix}\right.\)
Phương trình hoành độ giao điểm của \(y=-x^2+x+1\) và \(y=-x^2+3x\):
\(-x^2+x+1=-x^2+3x\)
\(\Leftrightarrow x=\dfrac{1}{2}\Rightarrow y=\dfrac{5}{4}\)
Đồ thị hàm số \(y=-x^2+3x\) và \(y=-x^2+x+1\):
Dựa vào đồ thị, yêu cầu bài toán thỏa mãn khi \(m< \dfrac{5}{4}\)
Mà \(m\in\left[-10;10\right]\Rightarrow m\in[-10;\dfrac{5}{4})\)
Cho: \(x^2-\left(m-3\right)x+2m-11=0\)
a)Cm: pt luôn có 2 nghiệm pb với mọi m
b)Tìm m để pt luôn có 2 nghiệm pb \(x_1:x_2\) là độ dài 2 cạnh của một tam giác vuông cạnh huyền =4
a) \(\Delta\)=(m-3)2-4.1.(2m-11)=m2-14m+53=(m-7)2+4\(\ge\)4.
\(\Rightarrow\) Phương trình đã cho luôn có hai nghiệm phân biệt với mọi m.
b) Từ ycđb, ta có: x12+x22=42 \(\Leftrightarrow\) (x1+x2)2-2x1x2=16 \(\Leftrightarrow\) (m-3)2-2(2m-11)=16 \(\Leftrightarrow\) m2-10m+15=0 \(\Leftrightarrow\) \(m=5\pm\sqrt{10}\).
cho hàm số \(y=x^2-2\left|x\right|\)
tìm m để pt: \(\left|x^2-2|x|+m\right|=1\) có 2 nghiệm pb
Xét pt \(\left|x^2-2\left|x\right|+m\right|=1\Leftrightarrow\left|\left(\left|x\right|-1\right)^2+m-1\right|=1\) (1)
Đặt \(\left(\left|x\right|-1\right)^2=t\ge0\) (2)
Ta thấy:
- Với \(\left[{}\begin{matrix}t=0\\t>1\end{matrix}\right.\) \(\Rightarrow\) (2) có 2 nghiệm
- Với \(t=3\Rightarrow\) (2) có 3 nghiệm
- Với \(0< t< 1\Rightarrow\) (2) có 4 nghiệm
- Với \(t< 0\Rightarrow\) (2) vô nghiệm
Xét pt: \(\left|t+m-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}t+m-1=1\\t+m-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}t=2-m\\t=-m\end{matrix}\right.\) luôn có 2 nghiệm
\(\Rightarrow\) (1) có 2 nghiệm khi
TH1: \(\left[{}\begin{matrix}-m< 0\\2-m=0\end{matrix}\right.\) \(\Rightarrow m=2\) (TH này pt có 2 nghiệm, nhưng đó là 2 nghiệm kép)
TH2: \(\left[{}\begin{matrix}-m< 0\\2-m>1\end{matrix}\right.\) \(\Rightarrow0< m< 1\)
Cho phương trình x^2+2(m+1)x+2m+2=0
a. Tìm m để pt có 2 nghiệm pb
b. Tìm m để pt có nghiệm kép, tính nghiệm đó
c. Tìm m để phương trình có hai nghiệm x1, x2 thỏa x^21+x^22=8
A, ta có: \(\Delta’\)=m2-1
Vậy trình có 2 nghiệm phân biệt <=> m2-1>0 => m>1
B,Phương trình có nghiệm kép khi: m2-1=0 => m=+- 1
Nghiem kép đó là: 0
\(x^2+2\left(m+1\right)x+2m+2=0\)
\(\Delta'=\left(m+1\right)^2-\left(2m+2\right)=m^2-1\)
a, Để phương trình có hai nghiệm phân biệt thì:
\(\Delta'>0\)
\(\Leftrightarrow m^2>1\)
\(\Leftrightarrow m^2-1>0\)
\(\Leftrightarrow m< -1;m>1\)
b, Phương trinh có nghiệm kép khi:
\(\Delta'\ge0\)
\(\Leftrightarrow m^2-1\ge0\)
\(\Leftrightarrow m\le-1;m\ge1\)
Theo Viet ta có:
\(x_1+x_2=-2\left(m+1\right)\)
\(x_1x_2=2\left(m+1\right)\)
\(x_1^2+x_2^2=8\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=8\)
\(\Leftrightarrow4m^2+4m-8=0\)
\(\Leftrightarrow\orbr{\begin{cases}m=1\\m=-2\end{cases}}\)
So với điều kiện phương trình có nghiệm m=1 ; m =-2
Cho pt`x^2+(m+2)x-m-4=0`
Tìm m để pt 2 nghiệm pb `x_1<0<=x_2`
Làm cách gì ngắn thui :v
Để phương trình có hai nghiệm phân biệt thỏa mãn \(x_1< 0\le x_2\) thì \(1\left(m-4\right)< 0\)
\(\Leftrightarrow m-4< 0\)
hay m<4
Cho pT x3-3x2 -mx-m+4=0
tìm m để PT
a, có 1 nghiệm
b,có 2 nghiệm pb
c, có 3 nghiệm pb
d có 3 nghiệm pb sao cho x12+x22+x32=10