Cho a,b,c là 3 số thực biết \(a^2+b^2+c^2=2\)
Tìm GTLN , GTNN của
M = a+b+c - abc
Bài toán:
a) Cho các số thực dương a,b,c thỏa mãn a+b+2c=6. Tìm GTNN của A= a^2+ b^2+ c^2 + 1/a^2+b^2+c^2
b) Cho các số thực dương a,b,c thỏa mãn Biết rằng 1 bé hơn hoặc bằng a;b;c bé hơn hoặc bằng 2 và a+b+c=5
tìm GTLN, GTNN của B=a^3+b^3+c^3
Giúp mình giải bài này với!!!!!!!!!!!!!!!!
Cho a^2+b^2+c^2=2 Tìm GTLN,GTNN của M=a+b+c-abc
Cho 3 số thực a,b,c không âm thỏa mãn \(a^2+b^2+c^2+abc=4\). GTNN và GTLN của biểu thức \(S=a^2+b^2+c^2\)là
1,cho các số thực a,b,c ko âm thỏa mãn : a+b+c=3. Tìm GTLN của biểu thức : Q= (a^2-ab+b^2)(b^2-bc+c^2)(c^2-ca+a^2)
2,cho số thực \(a\ge4\).Tìm GTNN của biểu thức S= \(a+\frac{1}{a}\)
2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)
Áp dụng BĐT AM-GM ta có:
\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)
\(S=\frac{17}{4}\Leftrightarrow a=4\)
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?
\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)
\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)
Dấu "=" xảy ra khi a = 4
Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)
1. Với các số thực dương a, b, c thay đổi thỏa mãn điều kiện a2+b2+c2+2abc=1, tìm GTLN của biểu thức P=ab+bc+ca-abc.
2. Cho các số thực dương a, b, c thỏa mãn các điều kiện (a+c)(b+c)=4c2. Tìm GTLN, GTNN của biểu thức P=\(\frac{a}{b+3c}+\frac{b}{a+3c}+\frac{ab}{bc+ca}\)
Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)
Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.
Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a
Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1
Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)
⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)
Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.
Xét các số thực a,b,c với \(b\ne a+c\) sao cho PT bậc 2 \(ax^2+bx+c=0\) có 2 nghiệm thực m,n thỏa mãn \(0\le m,n\le1\). Tìm GTLN và GTNN của biểu thức
\(M=\dfrac{\left(a-b\right)\left(2a-c\right)}{a\left(a-b+c\right)}\)
Em tham khảo ở đây:
xét các số thực a,b,c (a≠0) sao cho phương trình ax2+bx+c=0 có 2 nghiệm m, n thỏa mãn \(0\le m\le1;0\le m\le1\). tìm GTN... - Hoc24
Max thì đơn giản thôi em:
Do \(0\le m;n\le1\Rightarrow0< 2-mn\le2\)
\(\Rightarrow M=\dfrac{\left(2-mn\right)\left(m+n+1\right)}{mn+m+n+1}\le\dfrac{2\left(m+n+1\right)}{mn+m+n+1}\le\dfrac{2\left(m+n+1\right)}{m+n+1}=2\)
\(M_{max}=2\) khi \(mn=0\)
Cho các số thực không âm `a,b,c` sao cho `a^2+b^2+c^2=1`. Tìm GTLN,GTNN của `P=\sqrt{(a+b)/2}+sqrt{(b+c)/2}+\sqrt{(c+a)/2}`
\(P\le\sqrt{3\left(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\right)}=\sqrt{3\left(a+b+c\right)}\le\sqrt{3\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt[4]{27}\)
\(P_{max}=\sqrt[4]{27}\) khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Do \(\left\{{}\begin{matrix}0\le a;b;c\\a^2+b^2+c^2\le1\end{matrix}\right.\) \(\Rightarrow0\le a;b;c\le1\)
\(\Rightarrow\left\{{}\begin{matrix}a\left(a-1\right)\le0\\b\left(b-1\right)\le0\\c\left(c-1\right)\le0\end{matrix}\right.\) \(\Rightarrow a+b+c\ge a^2+b^2+c^2\)
Ta có:
\(P^2=a+b+c+2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{4}}+2\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{4}}+2\sqrt{\frac{\left(a+b\right)\left(c+a\right)}{4}}\)
\(P^2=a+b+c+\sqrt{a^2+ab+bc+ca}+\sqrt{b^2+ab+bc+ca}+\sqrt{c^2+ab+bc+ca}\)
\(P^2\ge a+b+c+\sqrt{a^2}+\sqrt{b^2}+\sqrt{c^2}=2\left(a+b+c\right)\ge2\left(a^2+b^2+c^2\right)=2\)
\(\Rightarrow P\ge\sqrt{2}\)
\(P_{min}=\sqrt{2}\) khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
bài 1:cho các số thực dương a,b,c thỏa mãn abc\(\le1\). cmr \(\frac{a}{b^2}+\frac{b}{c^2}\)+\(\frac{c}{a^2}\ge\)a+b+c\
bài 2: cho các số x2+y2=1. tìm gtln, gtnn của M=\(\sqrt{3}xy+y^2\)
cho a, b, c thỏa mãn: a2+b2+c2=2
tìm gtnn, gtln của M=a+b+c-abc