Tìm tất cả các số nguyên tố P để:
P+10 ; P+14; P+6; P+8; P+12; P+18 là số nguyên tố (P<10)
Tìm số nguyên tố p để:
p+2 , p+6 đều là số nguyên tố
Bạn xem lại đề đã viết đúng chưa vậy?
Tìm số nguyên tố P để:P+2;P+4 đều là số nguyên tố
Tìm số nguyên tố p để:p2+2p là số nguyên tố
*p=2 => p2+2p=8 (loại)
*p=3 => p^2+2^p = 17 (thỏa mãn)
*p>3 => p^2 chia 3 dư 1
mà p là số nguyên tố lớn hơn 3 nên p lẻ => 2^p= 2^(2k+1) chia 3 dư 2
=> p^2 +2^p chia hết cho 3 => lọai
Vậy p=3
Tìm tất cả các số nguyên tố p sao cho p+11 cũng là số nguyên tố
Tìm tất cả các số nguyên tố p để p+8, p+10 cũng là số nguyên tố
Nhanh gúup mình nhé mình đang cần gấp
p = 2. Vì 2 + 11 = 13 mà 13 là số nguyên tố. Và ngoài số 2 ra, không có số nguyên tố nào là số chẵn mà số 11 khi công với các số lẻ sẽ thành số chẵn.
p = 3; 5; 7; 11; ...( tất cả các số nguyên tố khác 2 )
Xong rùi đó. Chúc bạn học tốt! Nhớ k cho mình nha!
Tìm tất cả các số nguyên tố p để p+8, p+10 cũng là các số nguyên tố.
+Với \(p=2\) ta có: \(p+8=10\) là hợp số \(\Rightarrow\) không thỏa mãn \(p+10=12\)
+Với \(p=3\) ta có: \(p+8=11\)là số nguyên tố \(\Rightarrow\) thỏa mãn \(p+10=13\)
Với \(p>3\) do p là số nguyên tố \(\Rightarrow p=3k+1\) hoặc \(3k+2\)
Với \(p=3k+1\) thì \(p+8=3k+9\)
Do \(3k+9\) chia hết cho 3 mà \(3k+9>3\rightarrow3k+9\) là hợp số \(\Rightarrow\) không thỏa mãn \(p+10=3k+11\)
+Với \(p=3k+2\) thì \(p+8=3k+10\)
\(p+10=3k+12\)
Do \(3k+12\) chia hết cho \(3\) mà \(3k+12>3\rightarrow3k\) là hợp số ⇒ không thoả mãn
Vậy \(p=3\)
tìm tất cả các số nguyên tố p để p+8,p+10 cũng là số nguyên tố.
tìm tất cả các số nguyên tố p để p+8 và p+10 cũng là các số nguyên tố
vì p là số nguyên tố nên ta xét :
-p=2=>p+8=10laf hợp số (loại)
-p=3=>p+8=11 .Đều là số nguyên tố (t/m)
p+10=13
-p>3=>p có dạng 3k+1;3k+2(k thuộc N) (vì p là số nguyên tố)
*nếu p=3k+1=>p+8=3k+1+8=3k+9 chia hết cho 3 và 3k+9>3=>p+8 là hợp số (loại)
*nếu p=3k+2=>p+10=3k+2+10=3k+12 chia hết cho 3 và 3k+2>3=>p+10 là hợp số (loại)
Vậy p=3
Tìm tất cả các số nguyên tố p để p+8, p+10 cùng là số nguyên tố.
+Với p=2 ta có:p+8=10 là hợp số => không thỏa mãn
p+10=12
+Với p=3 ta có:p+8=11 là số nguyên tố=>thỏa mãn
p+10=13
Với p>3 do p là số nguyên tố =>p=3k+1 hoặc 3k+2
Với p=3k+1 thì p+8=3k+9 Do 3k+9 chia hết cho 3 mà 3k+9>3-> 3k+9 là hợp số=> không thỏa mãn
p+10=3k+11
+Với p=3k+2 thì p+8 =3k+10
p+10=3k+12 Do 3k+12 chia hết cho 3 mà 3k+12>3->3k là hợp số=>không thoả mãn
Vậy p=3
(+) Với p = 2 => p + 8 = 2 + 8 = 10 không là số nguyên tố
(+) p = 3 => p + 8 = 3 + 8 = 11 ; p + 10 = 3 + 10 = 13 là số nguyên tố
(+) với p > 3 => p có dạng 3k + 1 (1) và 3k + 2 (2)
(1) với p = 3k + 1 => p + 8 = 3k + 1 + 8 = 3k + 9 = 3 ( k + 3) chia hết cho 3 ( loại)
(2) với p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12 = 3 ( k + 4) chia hết cho 3 ( loại)
VẬy chỉ có p = 3 thỏa mãn
+Với p=2 ta có:p+8=10 là hợp số => không thỏa mãn
p+10=12
+Với p=3 ta có:p+8=11 là số nguyên tố=>thỏa mãn
p+10=13
Với p>3 do p là số nguyên tố =>p=3k+1 hoặc 3k+2
Với p=3k+1 thì p+8=3k+9 Do 3k+9 chia hết cho 3 mà 3k+9>3-> 3k+9 là hợp số=> không thỏa mãn
p+10=3k+11
+Với p=3k+2 thì p+8 =3k+10
p+10=3k+12 Do 3k+12 chia hết cho 3 mà 3k+12>3->3k là hợp số=>không thoả mãn
Vậy p=3
Tìm tất cả các số nguyên tố p đẻ p + 10 và p + 14 đều là số nguyên tố
Tìm tất cả các số nguyên tố p để p+10;p+14 đồng thời là số nguyên tố
dat p = 3k; 3k+1;3k+2
+ neu p= 3k => p+10= 3k+10
p+14= 3k+14(c)
+ neu p= 3k+1=> p+10= 3k+11
p+14= 3k+15= 3(k+5)(l)
+ ne p= 3k+2=> p+10= 3k+12= 3(k+4)
p+14= 3k+14 (l)
=> p=3k
ma p la snt
=> p=3