cho tam giac aBC vuong tai A co goc B=30 do, AB=6cm,Tia phan giac goc C cat AB tai D.Tinh AB va BD
cho tam giac ABC co 3 canh bang nhau .tia phan giac cu goc B cat canh AC tai B.tia phan giac cua C cat AB tai C.o la giao diem cua BD va CE Ching minh .a)BD vuong goc AC va CE vuong goc AB. b)OA=OA=OC. c)^AOB=^BOC=AOC =120 do
a: Ta có: ΔBAC cân tại B
mà BD là đường phân giác
nên BD là đường cao
Ta có: ΔCAB cân tại C
mà CE là đường phân giác
nên CE là đường cao
b: Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại O
DO đó: O là trực tâm của ΔBAC
mà ΔABC đều
nên O là tâm đường tròn ngoại tiếp ΔBAC
=>OA=OB=OC
c: ΔOAB cân tại O
nên góc AOB=180-2*30=120 độ
ΔOAC cân tại O
nên góc AOC=180-2*30=120 độ
góc BOC=360-120-120=120 độ
cho tam giac abc can tai c va goc c = 100 do bd la phan giac cua goc b tu a ke ax tao voi ab mot goc 30 do tia ax cat bd tai m cat bc tai e bk la phan giac abd bk cat ax tai n tinh acm so sanh mn va ce
cho tam giac ABC vuong tai A, co AB=4, AC=5
a) Hay so sanh so do goc B va goc C cua tam giac ABC
b)tia phan giac cua goc ABC cat canh AC tai D. Ke DM vuong goc voi BC tai M chung minh tam giac ABM=tam giac MBD
c)Hai tia MD va BÂct nhau tai E . tia BD cat EC tai N . Chung minh goc BNC=90o
d) Goi K la trung diem cua DE . Chung Minh CK=3/4 EC
1. Cho hinh thang ABCD , phan giac cua goc A cat duong cheo BD tai E va phan giac goc B cat AC tai F . Chung minh EF //AB?
2.Cho tam giac ABC , cac tia phan giac cua goc B va goc C cat nhau tai O . Tu A ve duong thang vuong goc voi OA cat BO , CO lan luot tai M va N . Chung minh BM vuong goc voi BN , CM vuong goc voi CN?
3.Cho goc vuong xOy ,vaf tam giac ABC vuong tai A (B thuoc Ox ,AC thuoc Oy,A va O nam tren hai nua mat phang doi nhau co bo la BC ).chung minh OA la tia phan gic cua xOy ?
cac ban giup mik nha
cho tam giac abc vuong tai a biet ab=6cm ac=8cm tinh do dai bc va so sanh cac goc ABC va goc ACB phan giac goc ABC cat AC tai M ve MN vuong goc voi BC tai N chung minh AB=BN tia BA va NM cat nhau tai I chung minh IC//AN
cho tam giac ABC can tai C.Ke tia phan giac voi goc C cat AB tai I.Biet AC=5cm,AB=6cm. a,Chung minh tam giac ACI=tam giac BCI va AI=BI. b,Tinh do dai CI. c, Qua A va B lan luot ke cac duong thang vuong goc voiAC va BC chung cat nhau tai K.Chung minh 3 diem C,I,K thang hang
Hình vẽ:
Giải:
a/ Xét \(\Delta ACI\) và \(\Delta BCI\) có:
AI: chung
\(\widehat{ACI}=\widehat{BCI}\left(gt\right)\)
AC = BC (gt)
=> \(\Delta ACI=\Delta BCI\left(c-g-c\right)\left(đpcm\right)\)
=> AI = BI (c t/ứng)(đpcm)
b/ \(\Delta ACI=\Delta BCI\left(ýa\right)\)
\(\Rightarrow\widehat{AIC}=\widehat{BIC}\) (g t/ứng)
mà \(\widehat{AIC}+\widehat{BIC}=180^o\) (kề bù)
=> \(\widehat{AIC}=\widehat{BIC}=90^o\)
=> CI _l_ AB
Vì AI = BI mà AB = 6
=> AI = BI = 3
Áp dụng định lý Py-ta-go vào \(\Delta ACI\) vuông tại I có: \(CI^2+AI^2=AB^2\)
hay \(CI^2+3^2=5^2\)
\(\Rightarrow CI^2=5^2-3^2=16\)
\(\Rightarrow CI=4\left(cm\right)\)
c/ Xét 2 \(\Delta vuông\): \(\Delta ACK\) và \(\Delta BCK\) có:
AK: chung
AC = BC (gt)
=> \(\Delta ACK=\Delta BCK\left(ch-cgv\right)\)
\(\Rightarrow\widehat{ACK}=\widehat{BCK}\) (g t/ứng)
=> CK là tia p/g của góc ACB (1)
Lại có: CI là tia p/g của góc ACB (gt)
=> CK trùng CI
=> 3 điểm C, I, K thẳng hàng (đpcm)
bai 1:cho tam giac ABC vuong tai A,phan giac AD tren canh BC lay diem H sao cho BH=BA
a)CMR:DH vuong goc BC
b)biet gocADH=110 đo.Tinh goc ABD
bai2:cho tam giac ABC co AB=AC=BC.Cac tia phan giac BD va CE cat nhau tai O.CMR:
a)BD vuong goc AC va CE vuong goc AB
b)OA=OB=OC
c)goc AOB=goc BOC=goc COA;tu do suy ra so do cua moi goc ay
bai3:cho O la mot diem cua AB.tren hai nua mat phang doi nhau bo AB ve cac tia Ax va By cung vuong goc voi AB.Lay diem M tren tia Ax,diem N tren tia By sao cho AM=BN.CMR:o la trung diem cua MN
bai 4:cho tam giac ABC vuong tai A co goc C=45 do.Ve phan giac AD.Tren tia doi cua tia AD lay diem E sao cho AE=BC.Tren tia doi cua tia CA lay diem F sao cho CF=AB.CMR:BE=BF va BE vuong goc BF
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
CHO tam giac ABC co goc A = 60 do .Cac tia phan giac cua B va C cat nhau tai O va cat AC ,AB lan luot tai D va E .Tia phan giac cua goc BOC cat tai BC tai F .CMR : a. OE=OD=OF . b. Tam giac DEF đêu
cho tam giac abc nhon noi tiep (O;R) co ab>ac tia phan giac cua goc a cat bc tai i va cat (O) tai d. ha be va cf vuong goc voi ad tai e va f, ve duong cao ah cua tam giac abc
c, ve im vuong goc ab tai m chung minh f,m,h thang hang
d, bf cat ce tai k chung minh ak la phan giac ngoai tam giac abc