Tìm giá trị của x+y biết:
x-y=2, xy=99 và y<0
Tìm x,y thuộc Z biết:x^2+xy=2019 và y^2-3xy=99
Từ pt thứ 2, ta thấy \(y^2⋮9\Leftrightarrow y⋮3\) \(\Leftrightarrow y=3z\left(z\inℤ\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xz=2019\\9z^2-9xz=99\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^2+3xz=2019\\z^2-xz=11\end{matrix}\right.\) (*)
Từ pt đầu tiên của (*), ta thấy \(x⋮3\Leftrightarrow x=3t\left(t\inℤ\right)\)
Khi đó \(9t^2+9tz=2019\) \(\Rightarrow2019⋮9\), vô lí.
Do đó, pt đã cho không có nghiệm nguyên.
a) Tìm giá trị của x + y biết x - y = 2 , xy = 99 và y < 0
b) Giá trị của x + y biết x - y = 4 , xy = 5 và x < 0
HD:
Dễ thấy b = 1, d = 2, e = 4 đặt y = x2 – 2 suy ra y2 = x4 – 4x2 + 4
Biến đổi P(x) = x4 – 4x2 + 4 – x3 – 6x2 + 2x
= (x2 – 2)2 – x(x2 – 2) – 6x2
Từ đó Q(y) = y2 – xy – 6x2
Tìm m, n sao cho m.n = - 6x2 và m + n = - x chọn m = 2x, n = -3x
Ta có: Q(y) = y2 + 2xy – 3xy – 6x2
= y(y + 2x) – 3x(y + 2x)
= (y + 2x)(y – 3x)
Do đó: P(x) = (x2 + 2x – 2)(x2 – 3x – 2).
a/ tìm GT của x+y biết x-y=2; x.y=99 và y<0
Vì x-y=2 nên
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\)
\(\Leftrightarrow\) x+y=20 hoặc x+y=-20
mà y<0 nên x+y=20
tu x-y=4 suy ra y=x-4
thay vao xy=5suy ra x(x-4)=5
\(\Rightarrow\) x^2-4x+4=9
\(\Rightarrow\)(x-2)^2=9
\(\Rightarrow\) x-2=+-3
vi x<0 \(\Rightarrow\) x=-3+2=-1
\(\Rightarrow\)y=x-4=-1-4=-5
\(\Rightarrow\) x+y=-1+-5=-6
Tìm giá trị của x+y biết x-y=2; xy=99 và y<0
tinhs giá trị của (x+y)62 biết x^2 +y^2 =2000 và xy=99
Bài 1:Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=x^2+y^2/x^2+xy+4y^2 với x2+xy+4y^2 khác 0.Bài 2:Với x;y thỏa mãn điều kiện x^2+y^2=1.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=2(xy+y^2)/1+2x^2+2xy.Giúp mik nhé mai mik đi hc r
Cho đa thức;P=x^3+x^2.y-2.x^2-x.y-y^2+3.y+x+2014.Tính giá trị của P biết:x+y=2
Tìm giá trị lớn nhất của biểu thức A=-x^2-y^2+xy+x+y
và các giá trị tương ứng của x và y
Cho x,y thõa x^2+y^2-xy=1. Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức P=x^4+y^4-x^2y^2.
Từ gt ta có x^2+y^^2=xy+1
=>P=(x^2+y^2)^2-2x^2y^2-x^2y^2
=(xy+1)2-2x2y2-x2y2
=x2y2+xy+1-3x2y2=-2x2y2+xy+1
=......
\(1=x^2+y^2-xy\ge2xy-xy=xy\Rightarrow xy\le1\)
\(1=x^2+y^2-xy\ge-2xy-xy=-3xy\Rightarrow xy\ge-\dfrac{1}{3}\)
\(\Rightarrow-\dfrac{1}{3}\le xy\le1\)
\(P=\left(x^2+y^2\right)^2-2\left(xy\right)^2-\left(xy\right)^2=\left(xy+1\right)^2-3\left(xy\right)^2=-2\left(xy\right)^2+2xy+1\)
Đặt \(xy=t\in\left[-\dfrac{1}{3};1\right]\)
\(P=f\left(t\right)=-2t^2+2t+1\)
\(f'\left(t\right)=-4t+2=0\Rightarrow t=\dfrac{1}{2}\)
\(f\left(-\dfrac{1}{3}\right)=\dfrac{1}{9}\) ; \(f\left(\dfrac{1}{2}\right)=\dfrac{3}{2}\) ; \(f\left(1\right)=1\)
\(\Rightarrow P_{max}=\dfrac{3}{2}\) ; \(P_{min}=\dfrac{1}{9}\)
tìm x, y biết:x+y/2014=xy/2015=x-y/2016
Ta có :
\(\frac{x+y}{2014}=\frac{xy}{2015}=\frac{x-y}{2016}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+y}{2014}=\frac{x-y}{2016}=\frac{x+y+x-y}{2014+2016}=\frac{x+x}{4030}=\frac{2x}{4030}=\frac{x}{2015}\)
Lại có :
\(\frac{xy}{2015}=\frac{x}{2015}\)
\(\Leftrightarrow\)\(xy=x\)
\(\Leftrightarrow\)\(y=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x+y}{2014}=\frac{x-y}{2016}=\frac{x+y-x+y}{2014-2016}=\frac{y+y}{-2}=\frac{2y}{-2}=\frac{y}{-1}=\frac{1}{-1}=-1\)
Do đó :
\(\frac{x}{2015}=-1\)
\(\Rightarrow\)\(x=-2015\)
Vậy \(x=-2015\) và \(y=1\)
Chúc bạn học tốt ~