Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngân Nguyễn
Xem chi tiết
mo chi mo ni
16 tháng 10 2018 lúc 17:10

Ta có bảng xét dấu:

-2/3 -1/3 3x+1 3x+2 o o _ _ + _ + +

Xét \(x\leq-\dfrac{2}{3}\)\(\Rightarrow\hept{\begin{cases}\left|3x+1\right|=-3x-1\\\left|3x+2\right|=-3x-2\end{cases}}\)

\(\Rightarrow 2(-3x-1)-5(-3x-2)=7\Rightarrow x=-\dfrac{1}{9}>-\dfrac{2}{3}(loại)\)

Tương tự xét \(-\dfrac{2}{3}\leq x\leq -\dfrac{1}{3}\)\(\Rightarrow\hept{\begin{cases}\left|3x+1\right|=-3x-1\\\left|3x+2\right|=3x+2\end{cases}}\)

thay vào biểu thức \(\Rightarrow 2(-3x-1)-5(3x+2)=7\Rightarrow x=-\dfrac{19}{21}<-\dfrac{2}{3}(loại)\)

Xét \(x\geq -\dfrac{1}{3}\)\(\Rightarrow\hept{\begin{cases}\left|3x+1\right|=3x+1\\\left|3x+2\right|=3x+2\end{cases}}\)

\(\Rightarrow 2(3x+1)-5(3x+2)=7\Rightarrow x=-\dfrac{5}{3}<-\dfrac{1}{3}(loại)\)

Suy ra ko có giá trị x thỏa mãn

đại khái cách giải là vầy nhưng kết quả thì mk dùng máy giải nên cũng ko chắc lắm! sai thì đừng ném đá nha!!!!!!

Mà máy tính nó cũng cho ra kết quả vô nghiệm

Ngân Nguyễn
21 tháng 10 2018 lúc 21:13

ukm 

thk

Nguyễn Văn Đình Lâm
Xem chi tiết
Đào Tiến Đạt
20 tháng 4 2022 lúc 21:37

...

Nguyễn Việt Lâm
23 tháng 4 2022 lúc 11:13

\(y'=7\left(-x^2+3x+7\right)^6.\left(-x^2+3x+7\right)'\)

\(=7\left(-2x+3\right)\left(-x^2+3x+7\right)^6\)

títtt
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 10 2023 lúc 14:42

a: \(y'< 0\)

=>\(\left(x-3\right)^3\cdot\left(x-1\right)^{22}\cdot\left(-3x-6\right)^7< 0\)

=>\(\left(x-3\right)\left(-3x-6\right)< 0\)

=>\(\left(x+2\right)\left(x-3\right)>0\)

=>\(\left[{}\begin{matrix}x>3\\x< -2\end{matrix}\right.\)

y'>0

=>\(\left(x+2\right)\left(x-3\right)< 0\)

=>\(-2< x< 3\)

y'=0

=>\(\left[{}\begin{matrix}x-3=0\\x-1=0\\-3x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\\x=-2\end{matrix}\right.\)

Ta có bảng xét dấu sau:

x\(-\infty\)       -2                    1               3               +\(\infty\)
y'-              0        +          0      +       0              -

Vậy: Hàm số đồng biến trên các khoảng \(\left(-2;1\right);\left(1;3\right)\)

Hàm số nghịch biến trên các khoảng \(\left(-\infty;-2\right);\left(3;+\infty\right)\)

b: y'<0

=>\(\left(4x-3\right)^3\cdot\left(x^2-1\right)^{21}\left(3x-9\right)^7< 0\)

=>\(\left(4x-3\right)\left(3x-9\right)\left(x^2-1\right)< 0\)

=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)< 0\)

TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< \dfrac{3}{4}\)

TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow1< x< 3\)

y'>0

=>\(\left(4x-3\right)\left(x-3\right)\left(x^2-1\right)>0\)

TH1: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)>0\\x^2-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>3\\x< \dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x>3\\x< -1\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}\left(4x-3\right)\left(x-3\right)< 0\\x^2-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\dfrac{3}{4}< x< 3\\-1< x< 1\end{matrix}\right.\Leftrightarrow\dfrac{3}{4}< x< 1\)

Ta sẽ có bảng xét dấu sau đây:

x\(-\infty\)       -1        3/4        1       3          +\(\infty\)
y'+                   0   -     0     +   0   -   0             +

Vậy: Hàm số đồng biến trên các khoảng \(\left(-\infty;-1\right);\left(\dfrac{3}{4};1\right);\left(3;+\infty\right)\)

Hàm số nghịch biến trên các khoảng \(\left(-1;\dfrac{3}{4}\right);\left(1;3\right)\)

nanako
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2021 lúc 21:33

a. Làm gọn 1 chút xíu:

\(y=\left(x^{11}+2x^7-3x^5-6x\right)\left(3x^7+6x^2-2\right)\)

\(y'=\left(11x^{10}+14x^6-15x^4-6\right)\left(3x^7+6x^2-2\right)+\left(21x^6+12x\right)\left(x^{11}+2x^7-3x^5-6x\right)\)

b.

 \(y'=5\left(x^4-\dfrac{2}{3x}\right)^4\left(4x^3+\dfrac{2}{3x^2}\right)\Rightarrow y'\left(10\right)=5\left(10^4-\dfrac{2}{30}\right)^4\left(4.10^3+\dfrac{2}{300}\right)=?\)

c.

\(y'=\dfrac{7}{\left(x+1\right)^2}\Rightarrow y'\left(4\right)=\dfrac{7}{25}\)

༺ミ𝒮σɱєσиє...彡༻
Xem chi tiết
Lấp La Lấp Lánh
11 tháng 11 2021 lúc 20:31

a) \(2x\left(x-5\right)-x\left(3+2x\right)=26\)

\(\Rightarrow2x^2-10x-3x-2x^2=26\)

\(\Rightarrow-13x=26\Rightarrow x=-2\)

b) \(3x\left(1-2x\right)+2\left(3x+7\right)=29\)

\(\Rightarrow3x-6x^2+6x+14=29\)

\(\Rightarrow-6x^2+9x-15=0\)

\(\Rightarrow-6\left(x^2-\dfrac{3}{2}x+\dfrac{9}{16}\right)-\dfrac{93}{8}=0\)

\(\Rightarrow-6\left(x-\dfrac{3}{4}\right)^2-\dfrac{93}{8}=0\)(vô lý)

Vậy \(S=\varnothing\)

nthv_.
11 tháng 11 2021 lúc 20:29

a. \(2x^2-10x-3x-2x^2=26\Leftrightarrow-13x=26\Leftrightarrow x=-2\)

Nguyễn Lê Phước Thịnh
11 tháng 11 2021 lúc 20:30

a: \(\Leftrightarrow2x^2-10x-3x-2x^2=26\)

hay x=-2

Nguyễn Khánh Linh
Xem chi tiết
Nguyễn Khánh Linh
25 tháng 9 2019 lúc 14:26

có ái đó giúp mình với mình đang cần gấp

Núi non tình yêu thuần k...
Xem chi tiết
hakito
12 tháng 6 2018 lúc 11:05

a)\(9x^2+30x+25+9x^2-30x+25-\left(9x^2-2^2\right)\)

=\(9x^2+54\)=\(9\left(x^2+6\right)\)

b)\(2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)\)

=\(8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x\)

=\(x^3-16x^2+25x\)

c)\(\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2\)

=\(\left(x+y-z-\left(x+y\right)\right)^2\)=\(\left(-z\right)^2\)

Cỏ dại
Xem chi tiết
Đỗ Ngọc Hải
12 tháng 6 2018 lúc 9:53

\(a,\left(3x+5\right)^2+\left(3x-5\right)^2-\left(3x+2\right)\left(3x-2\right)=9x^2+30x+25+9x^2-30x+25-9x^2+4=9x^2+54\)
\(b,BT=2x\left(4x^2-4x+1\right)-3x\left(x^2-9\right)-4x\left(x^2+2x+1\right)=8x^3-8x^2+2x-3x^3+27x-4x^3-8x^2-4x=x^3-16x^2+25x\)
\(c,BT=\left(x+y-z\right)^2-2\left(x+y-z\right)\left(x+y\right)+\left(x+y\right)^2=\left(x+y-z-x-y\right)^2=z^2\)

Quỳnh Như
Xem chi tiết
Hà thúy anh
22 tháng 7 2017 lúc 10:27

a) \(\left(2x+3\right)\left(x-4\right)+\left(x+5\right)\left(x-2\right)=\left(3x-5\right)\left(x-4\right)\)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x-5x+10=3x^2-12x-5x+20\)

\(\Leftrightarrow2x^2-8x+3x-12+x^2-2x+10=3x^2-12x+20\)

\(\Leftrightarrow3x^2-7x-2=3x^2-12x+20\)

\(\Leftrightarrow-7x+12x=20+2\)

\(\Leftrightarrow5x=22\)

\(\Rightarrow x=\dfrac{22}{5}\)

tick cho mk nha

Hà thúy anh
22 tháng 7 2017 lúc 10:31

b) \(\left(8x-3\right)\left(3x+2\right)-\left(4x+7\right)\left(x+4\right)=\left(2x+1\right)\left(5x-1\right)\)

\(\Leftrightarrow24x^2+16x-9x-6-4x^2-23x-28=10x^2+3x-1\)

\(\Leftrightarrow20x^2-16x-34-10x^2-3x+1=0\)

\(\Leftrightarrow10x^2-19x-33=0\)

\(\Delta=\left(-19\right)^2-4.10.\left(-33\right)=1320\)

\(x_1=3;x_2=\dfrac{-11}{10}\)

Tick cho mk nha

Hà thúy anh
22 tháng 7 2017 lúc 10:35

c) \(\left(3x-5\right)\left(7-5x\right)-\left(5x+2\right)\left(2-3x\right)=4\)

\(\Leftrightarrow21x-15x^2-35+25x-4x+15x^2-4=4\)

\(\Leftrightarrow42x-39=4\)

\(\Leftrightarrow42x=4+39\)

\(\Leftrightarrow42x=43\)

\(\Rightarrow x=\dfrac{43}{42}\)

Tick cho mk nha

nguyen danh phong
Xem chi tiết