\(n^4-6n^3+27n^2-54n+32\) chia hết cho 2 với mọi n thuocj z
giúp mk vs chiều đi hk rùi
\(n^4-6n^3+27n^2-54n+32\) chia hết cho 2 với mọi n thuộc z
giúp mk vs chiều ik hk rùi huhu
Cách 1:
Ta có:
\(A=n^4-6n^3+27n^2-54n+32=(n^4-n^3)-5n^3+5n^2+22n^2-22n-32n+32\)
\(=n^3(n-1)-5n^2(n-1)+22n(n-1)-32(n-1)\)
\(=(n-1)(n^3-5n^2+22n-32)\)
\(=(n-1)(n^3-2n^2-3n^2+6n+16n-32)\)
\(=(n-1)[n^2(n-2)-3n(n-2)+16(n-2)]\)
\(=(n-1)(n-2)(n^2-3n+16)\)
Ta thấy $(n-1)(n-2)$ là tích 2 số nguyên liên tiếp nên \((n-1)(n-2)\vdots 2\)
\(\Rightarrow A=(n-1)(n-2)(n^2-3n+16)\vdots 2\)
Ta có đpcm.
Cách 2:
\(A=n^4-6n^3+27n^2-54n+32\)
\(=(n^4+27n^2)-(6n^3+54n-32)\)
\(=n^2(n^2+27)-2(3n^3+27n-16)\)
Ta thấy \(n^2+27-n^2=27\) lẻ nên $n^2, n^2+27$ khác tính chẵn lẻ
Do đó trong 2 số $n^2$ và $n^2+27$ có 1 số chẵn, 1 số lẻ
\(\Rightarrow n^2(n^2+27)\vdots 2\)
Mà \(2(3n^3+27n-16)\vdots 2\)
Suy ra \(A=n^2(n^2+27)-2(3n^3+27n-16)\vdots 2\)
Ta có đpcm.
CMR : \(n^4-6n^3+27n^2-54n+32\)chia hết cho 2 với mọi \(n\in Z\)
CMR:(n4-6n3+27n2-54n+32)chia het cho 2
với mọi n thuoc Z
C/m rằng : \(\left(n^4-6n^3+27n-54n+32\right)⋮2\) vs mọi m thuộc Z
\(n^4-6n^3+27n^2-54n+32\)
\(=n^4-n^3-5n^3+5n^2+22n^2-22n+32n-32\)
\(=\left(n-1\right)\left(n^3-5n^2+22n+32\right)\)
\(=\left(n-1\right)\left(n^3-2n^2-3n^2+6n+16n+32\right)\)
\(=\left(n-1\right)\left(n-2\right)\left(n^2-3n+16\right)\) chia hếtcho 2
Chứng minh: Với mọi số nguyên n thì biểu thức sau: n^4-6n^3+27n^2-54n+32 luôn luôn chẵn
Ta có với n chẵn thì giá trị biểu thức trên luôn chẵn
Xét trường hợp n lẻ:
=> n4 lẻ, 6n3 chẵn, 27n2 lẻ, 54n chẵn, 32 chẵn
=> n4 + 6n3 + 272 + 54 + 32 là số chẵn
Vậy, giá trị biểu thức đã cho luôn chẵn với n thuộc Z
Cm: n^4 - 6n^3 + 27n^2 - 54n + 32 là số chẵn
Bài 1 : Cho x2 - x = 3 . Tính giá trị biểu thức M= x4 - 2x3 +3x2 -2x +2
Bài 2 : CM : biểu thức A= n4 - 6n3 +27n2 -54n + 32 là số chẵn
Bài 3: Tìm nghiệm nguyên của phương trình x2 = y ( y+1) ( y+2) ( y+3)
Bài 4 : Cho a là số nguyên tố lớn hơn 3 , CMR : ( a^2 -1 ) chia hết cho 24
Bài 1:
\(M=x^4-x^3-x^3+x^2+2x^2-2x+2\)
\(=x^2\left(x^2-x\right)-x\left(x^2-x\right)+2\left(x^2-x\right)+2\)
\(=3x^2-3x+6+2\)
\(=3x^2-3x+8\)
\(=3\left(x^2-x\right)+8=3\cdot3+8=17\)
giúp mik nhanh nhé , chiều đi học rùi
6n+4 chia hết cho 2n+1
3-2n chia hết cho n+1
6n + 4 chia hết cho 2n + 1
=> 3 ( 2n + 1) + 1 chia hết cho 2n + 1
=> 1 chia hết cho 2n + 1
=> 2n + 1 thuộc Ư ( 1 )
Mà Ư ( 1 ) = { 1 ; - 1 }
=> 2n + 1 thuộc { 1 ; - 1 }
=> 2n thuộc { 0 ; - 2 }
=> n thuộc { 0 ; - 1 }
Vậy n thuộc { 0 ; - 1 }
Theo đề, 6n + 4 \(⋮\) 2n + 1
hay 3.( 2n + 1) + 1 \(⋮\) 2n + 1
mà \(3.\left(2n+1\right)⋮2n+1\)
Vậy 1 \(⋮2n+1\)
=> 2n + 1 \(\inƯ\left(1\right)=\left\{1;-1\right\}\)
=> 2n + 1\(\in\) { 1 ; - 1 }
=> 2n \(\in\) { 0 ; - 2 }
=> n \(\in\) { 0 ; - 1 }
Vậy để 6n+4 chia hết cho 2n+1 thì n\(\in\){0 ; -1}
Tìm số nguyên n biết :
a) n+5 chia hết cho n-1
b) 2n-4 chia hết cho n+2
c) 6n+4 chia hết cho 2n+1
d) 3-2n chia hết cho n+1
Mọi người ơi, giúp mk đi, mk cần rất gấp bài này. Mai đi học phải nộp r.
Cảm ơn trước nhé.
MK làm phần c) còn các phần khác bn tự làm nha:
6n+4 \(⋮\)2n+1
+)Ta có:2n+1\(⋮\)2n+1
=>3.(2n+1)\(⋮\)2n+1
=>6n+3\(⋮\)2n+1(1)
+)Theo bài ta có:6n+4\(⋮\)2n+1(2)
+)Từ(1) và (2) suy ra (6n+4)-(6n+3)\(⋮\)2n+1
=>6n+4-6n-3\(⋮\)2n+1
=>1\(⋮\)2n+1
=>2n+1\(\in\)Ư(1)=1
=>2n+1=1
+)2n+1=1
2n =1-1
2n =0
n =0:2
n =0\(\in\)Z
Vậy n=0
Chúc bn học tốt
Bài giải
a) Ta có n + 5 \(⋮\)n - 1 (n \(\inℤ\))
=> n - 1 + 6 \(⋮\)n - 1
Vì n - 1 \(⋮\)n - 1
Nên 6 \(⋮\)n - 1
Tự làm tiếp.
b) Ta có 2n - 4 \(⋮\)n + 2
=> 2(n + 2) - 8 \(⋮\)n + 2
Vì 2(n + 2) \(⋮\)n + 2
Nên 8 \(⋮\)n + 2
Tự làm tiếp.
c) Ta có 6n + 4 \(⋮\)2n + 1
=> 6n + 4 - 3(2n + 1) \(⋮\)2n + 1
=> 6n + 4 - (6n + 3) \(⋮\)2n + 1
=> 1 \(⋮\)2n + 1
Tự làm tiếp
d) Ta có 3 - 2n \(⋮\)n + 1
=> -2n + 3 \(⋮\)n + 1
=> -2n - 2 + 5 \(⋮\)n + 1
=> -2(n + 1) + 5 \(⋮\)n + 1 (-2n - 2 + 5 = -2n + (-2).1 + 5 = -2(n + 1) + 5)
Vì -2(n + 1) \(⋮\)n + 1
Nên 5 \(⋮\)n + 1
Tự làm tiếp.