Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thuận
Xem chi tiết
keditheoanhsang
27 tháng 10 2023 lúc 21:14

Để phân tích đa thức thành nhân tử, ta có thể sử dụng phương pháp phân tích hệ số hoặc sử dụng định lý nhân tử của đa thức. Trong trường hợp này, chúng ta sẽ sử dụng phương pháp phân tích hệ số.

Đa thức: x^4 - 2x^3 + 10x^2 + 9x + 14

Đầu tiên, chúng ta sẽ tìm các ước của hệ số tự do (14). Các ước của 14 là ±1, ±2, ±7 và ±14. Tiếp theo, chúng ta sẽ thử từng ước này vào đa thức để kiểm tra xem có tồn tại nhân tử nào cho đa thức hay không.

Thử với ước 1: 1^4 - 2(1)^3 + 10(1)^2 + 9(1) + 14 = 32

Thử với ước -1: (-1)^4 - 2(-1)^3 + 10(-1)^2 + 9(-1) + 14 = 16

Thử với ước 2: 2^4 - 2(2)^3 + 10(2)^2 + 9(2) + 14 = 58

Thử với ước -2: (-2)^4 - 2(-2)^3 + 10(-2)^2 + 9(-2) + 14 = 10

Thử với ước 7: 7^4 - 2(7)^3 + 10(7)^2 + 9(7) + 14 = 2064

Thử với ước -7: (-7)^4 - 2(-7)^3 + 10(-7)^2 + 9(-7) + 14 = 1288

Thử với ước 14: 14^4 - 2(14)^3 + 10(14)^2 + 9(14) + 14 = 25088

Thử với ước -14: (-14)^4 - 2(-14)^3 + 10(-14)^2 + 9(-14) + 14 = 20096

Dựa vào kết quả trên, ta thấy rằng không có ước nào cho đa thức. Do đó, ta kết luận rằng đa thức x^4 - 2x^3 + 10x^2 + 9x + 14 không thể phân tích thành nhân tử trong trường số thực.

Mai Thị Khánh Linh
Xem chi tiết
Thu Thao
17 tháng 1 2021 lúc 20:32

undefined

Trần Đức Anh
Xem chi tiết
Minh Nguyễn
1 tháng 10 2021 lúc 8:04

1/(x+2)-(3x-1)2=(x+2+3x-1)(x+2-3x+1)=4x(-2x+3)=-8x2+12x

2/(x4+x2)(-2x3-2x)=x2(x2+1)-2x(x2+1)=(x2+1)(x2-2x)

khanh lam
Xem chi tiết
Yen Nhi
6 tháng 11 2021 lúc 9:37

\(x^2-\left(5-y\right)^2\)

\(=[x+\left(5-y\right)].[x-\left(5-y\right)]\)

\(=\left(x+5-y\right).\left(x-5+y\right)\)

\(=\left(x-y+5\right).\left(x+y-5\right)\)

Khách vãng lai đã xóa
Tuyến Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
15 tháng 10 2022 lúc 22:26

Sửa đề: \(\left(x-2\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+\left(2x-3\right)\left(3x-2\right)=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3-8+6x^2-13x+6=0\)

=>-x-10=0

=>x=-10

My Han Chu
Xem chi tiết
Trần Vũ Nguyên Khanh
8 tháng 10 2017 lúc 22:20

(x^2-6x+8)(x^2-8x+15)+1

=(x^2-4x-2x+8)(x^2-5x-3x+15)+1

=(x(x-4)-2(x-4))(x(x-5)-3(x-5))+1

=(x-4)(x-2)(x-5)(x-3)+1

=(x-2)(x-5)(x-3)(x-4)+1

=(x^2-7x+10)(x^2-7x+12)+1

Gọi a=x^2-7x+11, ta có

(a-1)(a+1)+1

= a2 - 1 + 1

= a2

= (x2 - 7x + 11)2

Biện Bạch Ngọc
Xem chi tiết
Võ Đông Anh Tuấn
28 tháng 10 2016 lúc 9:17

Đăng từng câu thôi như hế này thì chắc .....

Biện Bạch Ngọc
Xem chi tiết
Hồng Ánh Lê
22 tháng 10 2022 lúc 19:51

Bạn ơi, đắng từng câu thôi, thê này dài quá!

Lê bảo tú
Xem chi tiết
Gấuu
10 tháng 8 2023 lúc 12:39

\(4a^2b^2-\left(a^2+b^2-c^2\right)^2\)

\(=4a^2b^2-2ab\left(a^2+b^2-c^2\right)+2ab\left(a^2+b^2-c^2\right)-\left(a^2+b^2-c^2\right)^2\)

\(=2ab\left[2ab-\left(a^2+b^2-c^2\right)\right]+\left(a^2+b^2-c^2\right)\left[2ab-\left(a^2+b^2-c^2\right)\right]\)

\(=\left(2ab+a^2+b^2-c^2\right)\left(2ab-a^2-b^2+c^2\right)\)

\(=\left(a^2+ab+ab+b^2-c^2\right)\left[c^2-\left(a^2-ab-ab+b^2\right)\right]\)

\(=\left[a\left(a+b\right)+b\left(a+b\right)-c^2\right]\left[c^2-\left(a\left(a-b\right)-b\left(a-b\right)\right)\right]\)

\(=\left[\left(a+b\right)^2-c^2\right]\left[c^2-\left(a-b\right)^2\right]\)

\(=\left[\left(a+b\right)^2-c\left(a+b\right)+c\left(a+b\right)-c^2\right]\left[c^2+c\left(a-b\right)-c\left(a-b\right)-\left(a-b\right)^2\right]\)

\(=\left[\left(a+b\right)\left(a+b-c\right)+c\left(a+b-c\right)\right]\left[c\left(c+a-b\right)-\left(a-b\right)\left(c+a-b\right)\right]\)

\(=\left(a+b+c\right)\left(a+b-c\right)\left(c+a-b\right)\left(c-a+b\right)\)