cho tứ giác ABCD có góc A bằng góc C,góc b bằng góc D.Chứng minh AB song song CD
Cho tứ giác ABCD có góc A bằng góc B và BC = AD
a tam giácDAB= TAM GIÁC CAB TỪ ĐÓ SUY RA bd=ac
b,góc ADC = góc BCD
C,AB song song với CD
Bài làm
a) Xét tam giác DAB và tam giác CBA có:
AD = BC ( giả thiết )
\(\widehat{DAB}=\widehat{CBA}\)
AB chung
=> Tam giác DAB = tam giác CBA ( c.g.c )
=> BD = AC ( hai cạnh tương ứng )
b) Vì tam giác DAB = tam giác CBA ( cmt )
=> \(\widehat{ABD}=\widehat{BAC}\)( hai góc tương ứng )
Ta có: \(\widehat{ABD}+\widehat{DBC}=\widehat{ABC}\)
\(\widehat{BAC}+\widehat{CAD}=\widehat{BAD}\)
Mà \(\widehat{ABD}=\widehat{BAC}\)( cmt )
\(\widehat{ABC}=\widehat{BAD}\)( giả thiết )
=> \(\widehat{DBC}=\widehat{CAD}\)
Xét tam giác CAD và tam giác DBC có:
BC = AD ( giả thiết )
\(\widehat{DBC}=\widehat{CAD}\)( cmt )
BD = AC ( cmt )
=> Tam giác CAD = tam giác DBC ( c.g.c )
=> \(\widehat{ADC}=\widehat{BCD}\)( hai góc tương ứng )
c) Gọi O là giao điểm của BD và AC
Xét tam giác OAB có:
\(\widehat{ABD}=\widehat{BAC}\)( cmt )
=> Tam giá OAB cân tại O
=>\(\widehat{ABD}+\widehat{BAC}=180^0-\widehat{AOB}\)
=> \(2\widehat{ABD}=180^0-\widehat{AOB}\) (1)
Xét tam giác OCD có:
\(\widehat{BDC}=\widehat{ACD}\)( Do tam giác CAD = tam giác DBC )
=> Tam giác OCD cân tại O
=> \(\widehat{BDC}+\widehat{ACD}=180^0-\widehat{DOC}\)
=> \(2\widehat{BDC}=180^0-\widehat{DOC}\) (2)
Ta có: \(\widehat{AOB}=\widehat{DOC}\) ( hai góc đối ) (3)
Từ (1), (2) và (3) => \(2\widehat{ABD}=2\widehat{BDC}\) => \(\widehat{ABD}=\widehat{BDC}\)
Mà hai góc này ở vị trí so le trong
=> AB // CD ( đpcm )
a) Xét tam giác DAB và tam giác CAB có :
AD = BC
\(\widehat{DAB}=\widehat{CBA}\)
Chung AB
\(\Rightarrow\)tam giác DAB = tam giác CAB ( c-g-c )
\(\Rightarrow AC=DB\)( 2 cạnh tương ứng )
b ) Xét tam giác ADC và tam giác BCD có :
AD = BC
AC = BD
chung CD
\(\Rightarrow\)tam giác ADC = tam giác BCD ( c-c-c )
\(\Rightarrow\widehat{ADC}=\widehat{BCD}\)( 2 góc tương ứng )
Cho tứ giác ABCD , AB song song CD góc A = góc 3D , góc B – góc C = 30 độ
Tính góc A , B , C , D
Vì AB//CD nên Góc A và góc D là hai góc trong cùng phía
\(\widehat{A}\)+ \(\widehat{D}\) = 1800 ⇒ \(\widehat{D}\) + 3\(\widehat{D}\) = 1800 ⇒ \(\widehat{D}\) = 1800:4 = 450
\(\widehat{A}\) = 450.3 =1350
\(\widehat{B}\)+\(\widehat{C}\) = 1800 ⇒ \(\widehat{B}\) + \(\widehat{B}\) - 300 = 1800 ⇒2\(\widehat{B}\) =2100 ⇒ \(\widehat{B}\) = 1050
\(\widehat{C}\) = 1050 - 300 = 750
Cho tứ giác ABCD có AB <CD , góc B bằng góc D. Tia phân giác của góc A cắt cạnh BC ở F. Tia phân giác góc C cắt cạnh AD ở E. CMR: AE song song CF
1.tứ giác abcd có ab=bc=cd, góc a+ góc d bằng 140 độ gọi O là giao điểm của 2 đường chéo. tính số đo góc AOD
2. Tứ giác abcd có các tia phân giác của các góc b và d song song với nhau. CMR góc A bằng góc C
Giúp em với ạ, chiều em hc rồi í ạ, em xin chân thành cảm ơn ạ❤💞
Giúp mik nha tối nay học rồi!
Bài 1 :Cho tứ giác ABCD có góc A+góc C=180 độ, AB<AC,AC là phân giác góc BAD.E thuộc cạnh Ad sao cho AE=AB.CMR: BC=CE=CD
Bài 2: Cho tứ giác ABCD có DB là phân giác góc ADC
a,Giả sử AB song song CD. CMR: AB=AD
b,Giả sử AB=AD.CMR: AB song song CD
Bài 3:Cho hình thnag ABCD có AB song song CD.AB=AD+BC.CMR: Phân giác góc C và D cắt nhau tại 1 điểm E nằm trên đoạn AB
1.Cho hình thang ABCD (AB song song với CD), M là trung điểm BC. Cho biết DM là phân giác của góc D. Chứng minh AM là phân giác của góc A.
2. Cho tứ giác ABCD có AD=AB=BC và góc A+góc C= 180 độ. Chứng minh rằng:
a)DB là phân giác của góc D
b)ABCD là hình thanh cân
Cho tứ giác ABCD có AB song song CD, Cx là tia đối của tia CD, biết góc ADC=65°; BCx=130°. Tính số đo góc A, Góc B của tứ giác
Cho hình thang ABCD (AB//CD). Các đường phân giác ngoài của góc A và D cắt nhau tại E, các đường phân giác ngoài của góc B và góc C cắt nhau tại F. Chứng minh:
a) EF song song với AB và CD.
b) EF có độ dài bằng nửa chu vi hình thang ABCD
a) Gọi M và N lần lượt là giao điểm của AE, BF với CD.
Ta có: A D E ^ = 1 2 D ^ ngoài, D A E ^ = 1 2 A ^ ngoài.
Mà A ^ ngoài + D ^ ngoài = 1800 (do AB//CD)
⇒ A D E ^ + D A E ^ = 90 0 , tức là tam giác ADE vuông tại E.
Khi đó, tam giác ADM cân tại D (do có DE vừa là đường phân giác, vừa là đường cao) và E là trung điểm của AM.
Chứng minh tương tự, ta được F olaf trung điểm của BN.
Từ khó, suy ra EF là đường trung bình của hình thang ABNM và ta được ĐPCM
b) Từ ý a), EF = 1 2 ( A B + B C + C D + D A )
a:
góc AMD=180 độ-góc MAD-góc MDA
\(=180^0-\dfrac{180^0-\widehat{BAD}}{2}-\dfrac{180^0-\widehat{ADC}}{2}\)
\(=180^0-\dfrac{1}{2}\widehat{ADC}-90^0+\dfrac{1}{2}\widehat{ADC}=90^0\)
Gọi giao của AM với DC là M'
Xét ΔDM'A có
DM là đường cao, là đường phân giác
nên ΔDM'A cân tại D
=>M là trung điểm của AM'
Gọi giao của BN với DC là N'
Ta có: \(\widehat{BNC}=180^0-\widehat{NBC}-\widehat{NCB}\)
\(=180^0-\dfrac{180^0-\widehat{ABC}}{2}-\dfrac{180^0-\widehat{BCD}}{2}\)
\(=180^0-90^0+\dfrac{1}{2}\widehat{ABC}-90^0+\dfrac{1}{2}\widehat{BCD}\)
=90 độ
Xét ΔCN'B có
CN vừa là đường cao, vừa là phân giác
nên ΔCN'B cân tại C
=>N là trug điểm của BN'
Xét hình thang ABN'M' có
M,N lần lượt là trung điểm của AM' và BN'
nen MN là đường trung bình
=>MN//CD//AB
b: MN=(AB+M'N')/2
=(AB+M'D+CD+CN')/2
mà M'D=AD và CN'=CB
nên MN=(AB+CD+AD+CB)/2
1) Cho tứ giac ABCD có bốn góc vuông ( hình chữ nhật ABCD) . Cmr : AB=CD , AD=BC
2) CHO TỨ GIÁC ABCD CÓ AB=CD , AD=BC . CMR : tia phân giác của góc A, C song song với nhau
một bài một tick nhé , mình có 2 account
1: Ta có:ABCD là hình chữ nhật
nên AB=CD;AD=BC
2: Xét tứ giác ABCD có
AB=CD
AD=BC
Do đó: ABCD là hình bình hành
Xét ΔADE và ΔCBF có
\(\widehat{D}=\widehat{B}\)
AD=CB
\(\widehat{DAE}=\widehat{BCF}\)
Do đó: ΔADE=ΔCBF
Suy ra: \(\widehat{AED}=\widehat{CFB}\)
=>\(\widehat{AEC}=\widehat{CFA}\)
Xét tứ giác AECF có
\(\widehat{AEC}=\widehat{CFA}\)
\(\widehat{FAE}=\widehat{FCE}\)
Do đó: AECF là hình bình hành
Suy ra: AE//CF
Bài 1: Hình thang cân ABCD (AB song song CD) có AB=11cm, BC=CD=25cm. Tính độ dài BD
Bài 2:Tứ giác ABCD có góc B = 105 độ, góc D = 75 độ, AB = BC = CD. Chứng minh rằng:
a) AC là tia phân giác góc A
b) ABCD là hình thang cân?